【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比

简介: 【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比

【MATLAB第50期】基于MATLAB的RELM-LOO多输入单输出回归&分类预测算法与RELM及ELM进行对比


引言


RELM-LOO即通过LOO计算效率方法对其RELM模型正则化C系数进行寻优。

对于进化算法寻优来说, 结果更稳定。


可参考以下文献:

[1] Shao Z , Er M J , Wang N .An effective semi-cross-validation model selection method for extreme learning machine with ridge regression[J].Neurocomputing, 2015, 151:933-942.DOI:10.1016/j.neucom.2014.10.002.


[2] Shao Z , Er M J .Efficient Leave-One-Out Cross-Validation-based Regularized Extreme Learning Machine[J].Neurocomputing, 2016, 194(jun.19):260-270.DOI:10.1016/j.neucom.2016.02.058.


一、回归模型


1.数据情况


7输入1输出,103行样本数据 。

前80训练,后23测试 ,随机样本抽取。

%%  导入数据
res = xlsread('数据集.xlsx');
%%  划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

2.参数设置

nn.hiddensize     = 100;% 隐含层神经元数
nn.inputsize      = size(p_train,1); %输入变量数量 
nn.activefunction = 's';   %sigmoid激活函数 
method            = {'ELM','RELM','RELM-LOO'};% 方法进行对比
nn                = elm_initialization(nn);% 初始elm偏差及权值 
nn.C1              = 0.001; %RELM初始化正则化参数
nn.C2             = exp(-8:0.2:6); %RELM-LOO搜寻正则化参数范围 

3.效果展示

ELM训练集数据的RMSE为:2.0216
ELM测试集数据的RMSE为:3.199
ELM训练集数据的R2为:0.9337
ELM测试集数据的R2为:0.79778
ELM训练集数据的MAE为:1.5877
ELM测试集数据的MAE为:1.9848
ELM训练集数据的MBE为:0.00034057
ELM测试集数据的MBE为:0.41401
RELM训练集数据的RMSE为:1.643
RELM测试集数据的RMSE为:2.5332
RELM训练集数据的R2为:0.99366
RELM测试集数据的R2为:0.95801
RELM训练集数据的MAE为:0.49995
RELM测试集数据的MAE为:0.88175
RELM训练集数据的MBE为:0.12195
RELM测试集数据的MBE为:0.10933
RELM-LOO训练集数据的RMSE为:0.62506
RELM-LOO测试集数据的RMSE为:1.4577
RELM-LOO训练集数据的R2为:0.99366
RELM-LOO测试集数据的R2为:0.95801
RELM-LOO训练集数据的MAE为:0.49995
RELM-LOO测试集数据的MAE为:0.88175
RELM-LOO训练集数据的MBE为:0.12195
RELM-LOO测试集数据的MBE为:0.10933


二、分类模型


1.数据情况


12输入1输出,357行样本数据 ,4分类标签。

前240训练,后157测试 ,随机样本抽取。

%%  导入数据
res = xlsread('数据集C.xlsx');
%%  划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);


2.参数设置


nn.hiddensize = 100;% 隐含层神经元数

nn.inputsize = size(p_train,1); %输入变量数量

nn.activefunction = ‘s’; %sigmoid激活函数

method = {‘ELM’,‘RELM’,‘RELM-LOO’};% 方法进行对比

nn = elm_initialization(nn);% 初始elm偏差及权值

nn.C = 0.1; %正则化参数

nn.C2 = exp(-4:0.2:4); %RELM-LOO搜寻正则化参数范围

nn.type = ‘classification’;;%分类


3.效果展示



ELM训练集数据的正确率acc为:96.25
ELM测试集数据的正确率acc为:94.0171
RELM训练集数据的正确率acc为:96.25
RELM测试集数据的正确率acc为:96.5812
RELM-LOO训练集数据的正确率acc为:97.0833
RELM-LOO测试集数据的正确率acc为:97.4359


三、代码获取


后台私信回复“50期”可获取下载链接。

相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。

热门文章

最新文章