数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

简介: 数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

数值分析算法 MATLAB 实践 线性方程组 SOR迭代法

% 逐次超松驰迭代法(successive over relaxation method)迭代法
% function [x,t,it,w] = SORFunc(A,b,I,eps,w)
% A: 系数矩阵 b: 载荷矩阵 I: 最大迭代次数
% w: 松弛因子(w=1 时即为 Gauss-Seidel 迭代法)
% x: 解矩阵% t: 时间
% it: 迭代次数% w: 松弛因子% 迭代初值默认为 0
A1 = [8 -3 2; 4 11 -1; 6 3 12]; b1 = [20; 33; 36];
w=1.2;%松弛因子
it_max = 1000;eps=1e-6;
[x6,t6,k6_cnt,w] = SORFunc(A1,b1,it_max,eps,w);
disp('迭代次数:k6_cnt=');
disp(k6_cnt)
disp(['方程组的解:x6 = ']);
disp(x6)

%% function [x,n,flag]=SOR(A,b,eps,W,it_max)
%sor函数为用松弛迭代法求解线性方程组
%A为线性方程组的系数矩阵%b为线性方程组的常数向量
%eps为精度要求 %W为超弛因子 %max1为最大迭代次数
%x为线性方程组的解%n为迭代次数
%flag为指标变量,flag='OK!'表示迭代收敛达到指标要求%flag='fail!'表示迭代失败
A2 = [8 -3 2; 4 11 -1; 6 3 12]; b2 = [20; 33; 36];
W=1.2;%松弛因子
it_max = 1000;eps=1e-6;%最大迭代次数
[x7,k7_cnt,flag]=SOR(A2,b2,eps,W,it_max);
disp('迭代次数:k7_cnt=');
disp(k7_cnt)
disp(['方程组的解:x7 = ']);
disp(x7)

%% function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  输入:A:系数矩阵   b:常数矩阵;  x0:初始解;
%  MaxIters:最大迭代次数;
%  err:精度阈值;  w:松弛因子; 输出: x:近似解;  k:迭代次数;
x0 = [0;0;0];
%调用SOR超松弛迭代法求解
A3 = [8 -3 2; 4 11 -1; 6 3 12]; b3 = [20; 33; 36];
it_max = 1000; eps=1e-6;
%w松弛因子 w>1 超松弛迭代法 w=1 高斯-赛德尔迭代 w<1 低松弛迭代法
w0 = 0.6;  % w<1 低松弛迭代法
w1 = 1.1; % w>1 超松弛迭代法
w2 = 1.9; % w>1 超松弛迭代法
[x8_0, k8_cnt0] = SORFunmethod(A3, b3, x0, it_max, eps, w0);
[x8_1, k8_cnt1] = SORFunmethod(A3, b3, x0, it_max, eps, w1);
[x8_2, k8_cnt2] = SORFunmethod(A3, b3, x0, it_max, eps, w2);
disp('迭代次数:k8_cnt0=');
disp(k8_cnt0)
disp(['方程组的解:x8_0 = ']);
disp(x8_0)
disp('迭代次数:k8_cnt1=');
disp(k8_cnt1)
disp(['方程组的解:x8_1 = ']);
disp(x8_1)
disp('迭代次数:k8_cnt2=');
disp(k8_cnt2)
disp(['方程组的解:x8_2 = ']);
disp(x8_2)
function [x,n,flag]=SOR(A,b,eps,W,it_max)
%sor函数为用松弛迭代法求解线性方程组
%A为线性方程组的系数矩阵%b为线性方程组的常数向量
%eps为精度要求 %W为超弛因子 %max1为最大迭代次数
%x为线性方程组的解%n为迭代次数
%flag为指标变量,flag='OK!'表示迭代收敛达到指标要求%flag='fail!'表示迭代失败
    if nargin<5
        it_max=10000;
    end
    if nargin<4
        W=1;
    end
    if nargin<3
        eps=1e-11;
    end
    k=length(A);
    n=0;
    x=zeros(k,1);
    y=zeros(k,1);
    flag='OK!';
    while (1)
        y=x;
        for i=1:k
            z=b(i);
            for j=1:k
                if j~=i
                    z=z-A(i,j)*x(j);
                end
            end
            if abs(A(i,i))<1e-10 | n==it_max
                flag='fail!';
                return;
            end
            z=z/A(i,i);
            x(i)=(1-W)*x(i)+W*z;
        end
        if norm(y-x,inf)<eps
            break;
        end
        n=n+1;
    end
end
function [x,t,it,w] = SORFunc(A,b,I,eps,w)
% 逐次超松驰迭代法(successive over relaxation method)迭代法
% A: 系数矩阵 b: 载荷矩阵 I: 最大迭代次数
% w: 松弛因子(w=1 时即为 Gauss-Seidel 迭代法)
% x: 解矩阵% t: 时间
% it: 迭代次数% w: 松弛因子% 迭代初值默认为 0
tic%开始时间
    [n,~] = size(A);
    x = zeros(n,1);
    D = diag(diag(A)); %求 A 的对角矩阵
    L = -tril(A,-1); %求 A 的下三角矩阵,不带对角线
    U = -triu(A,1); %求 A 的上三角矩阵
    w_opt = 2/(1+sqrt(1-(vrho(D\(L+U)))^2)); % 最佳松弛因子
    if nargin < 4
        eps = 1e-6;
        w = w_opt;
    end
    if nargin < 5
        w = w_opt;
    end
    Lw = (D-w*L)\((1-w)*D+w*U);
    f = w*((D-w*L)\b);
    x_exact = A\b;
    it = 1;
    for k = 1:I-1
        x = Lw*x+f;
        if norm(x-x_exact)>eps
        it = it+1;
        end
    end
    t = toc;%结束时间
end
function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  函数功能:对超松弛迭代法求解线性方程组;
% function [x, k] = SORFunmethod(A, b, x0, MaxIters, err, w)
%  输入:A:系数矩阵   b:常数矩阵;  x0:初始解;
%  MaxIters:最大迭代次数;
%  err:精度阈值;  w:松弛因子; 输出: x:近似解;  k:迭代次数;
  n = length(x0); 
  x1 = x0;  
  x2 = zeros(n, 1); 
  x3 = zeros(n, 1);
  r = max(abs(b - A*x1));
  k = 0;
  while r > err
    for i = 1:n
        sum = 0;
        for j = 1:n
            if j > i
                sum = sum + A(i, j) * x1(j);
            elseif j < i
                sum = sum + A(i, j) * x2(j);
            end
        end
        x2(i) = (1 - w)*x1(i) + w*(b(i) - sum) / (A(i, i) + eps);
    end
    for i = n:-1:1
        sum = 0;
        for j = 1:n
            if j > i
                sum = sum + A(i, j) * x3(j);
            elseif j < i
                sum = sum + A(i, j) * x2(j);
            end
        end
        x3(i) = (1 - w) * x2(i) + w * (b(i) - sum) / A(i, i);
    end
    r = max(abs(x3 - x1));
    x1 = x3;
    k = k + 1;
    if k > MaxIters
        x = [];
        return;
    end
  end
  x = x1;       %最终输出结果
end
目录
相关文章
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
19天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
32 8