将330亿参数大模型「塞进」单个消费级GPU,加速15%、性能不减

简介: 将330亿参数大模型「塞进」单个消费级GPU,加速15%、性能不减


个人终端设备跑大模型成为现实了。


预训练大语言模型(LLM)在特定任务上的性能不断提高,随之而来的是,假如 prompt 指令得当,其可以更好的泛化到更多任务,很多人将这一现象归功于训练数据和参数的增多,然而最近的趋势表明,研究者更多的集中在更小的模型上,不过这些模型是在更多数据上训练而成,因而在推理时更容易使用。

举例来说,参数量为 7B 的 LLaMA 在 1T token 上训练完成,尽管平均性能略低于 GPT-3,但参数量是后者的 1/25。不仅如此,当前的压缩技术还能将这些模型进一步压缩,在保持性能的同时还能大幅减少内存需求。通过这样的改进,性能良好的模型可以在终端用户设备(如笔记本)上进行部署。

然而,这又面临另一个挑战,即想要将这些模型压缩到足够小的尺寸以适应这些设备,怎样才能兼顾生成质量。研究表明,尽管压缩后的模型生成的答案准确率还可以,但现有的 3-4 位量化技术仍然会让准确性降低。由于 LLM 生成是顺序进行的,依赖于先前生成的 token,小的相对误差不断累积并导致严重的输出损坏。为了确保可靠的质量,关键是设计出低位宽的量化方法,与 16 位模型相比不会降低预测性能。

然而,将每个参数量化到 3-4 位通常会导致中等程度、甚至是高等程度的准确率损失,特别是那些非常适合边缘部署的 1-10B 参数范围内的较小模型。

为了解决准确性问题,来自华盛顿大学、苏黎世联邦理工学院等机构的研究者提出了一种新的压缩格式和量化技术 SpQR(Sparse-Quantized Representation,稀疏 - 量化表征),首次实现了 LLM 跨模型尺度的近无损压缩,同时达到了与以前方法相似的压缩水平。

SpQR 通过识别和隔离异常权重来工作,这些异常权重会导致特别大的量化误差,研究者将它们以更高的精度存储,同时将所有其他权重压缩到 3-4 位,在 LLaMA 和 Falcon LLMs 中实现了不到 1% 的困惑度相对准确率损失。从而可以在单个 24GB 的消费级 GPU 上运行 33B 参数的 LLM,而不会有任何性能下降,同时还能提高 15% 的速度。

SpQR 算法高效,既可以将权重编码为其他格式,也可以在运行时进行有效地解码。具体来说,该研究为 SpQR 提供了一种高效的 GPU 推理算法,可以比 16 位基线模型更快地进行推理,同时实现了超过 4 倍的内存压缩收益。


方法

该研究提出一种混合稀疏量化的新格式 —— 稀疏量化表征(SpQR),可以将精确预训练的 LLM 压缩到每个参数 3-4 位,同时保持近乎无损。

具体来说,该研究将整个过程分为两步。第一步是异常值检测:该研究首先孤立了异常值权重,并证明其量化会导致高误差:异常值权重保持高精度,而其他权重以低精度(例如 3 位的格式)存储。然后,该研究以非常小的组大小实现分组量化(grouped quantization)的变体,并表明量化尺度本身可以被量化为 3 位表征。

SpQR 极大地减少了 LLM 的内存占用,而不会降低准确性,同时与 16 位推理相比,LLM 的生成速度快了 20%-30%。

此外,该研究发现,权重矩阵中敏感权重的位置不是随机的,而是具有特定的结构。为了在量化过程中突出显示其结构,该研究计算了每个权重的敏感度,并为 LLaMA-65B 模型可视化这些权重敏感度。下图 2 描绘了 LLaMA-65B 最后一个自注意力层的输出投影。

该研究对量化过程进行了两个改变:一个用于捕捉小的敏感权重组,另一个用于捕捉单个的异常值。下图 3 为 SpQR 的总体架构:

下表为 SpQR 量化算法,左边的代码片段描述了整个过程,右边的代码片段包含了二级量化和查找异常值的子程序:

实验

该研究将 SpQR 与其他两种量化方案进行了比较:GPTQ、RTN(rounding-to-nearest),并用两个指标来评估量化模型的性能。首先是困惑度的测量,所用数据集包括 WikiText2、 Penn Treebank 以及 C4;其次是在五个任务上的零样本准确率:WinoGrande、PiQA、HellaSwag、ARC-easy、ARC-challenge。

主要结果。图 1 结果显示,在相似的模型大小下,SpQR 的性能明显优于 GPTQ(以及相应的 RTN),特别是在较小的模型上。这种改进得益于 SpQR 实现了更多的压缩,同时也减少了损失退化。

表 1、表 2 结果显示,对于 4 位量化,与 GPTQ 相比,SpQR 相对于 16 位基线的误差减半。

表 3 报告了 LLaMA-65B 模型在不同数据集上的困惑度结果。

最后,该研究评估了 SpQR 推理速度。该研究将专门设计的稀疏矩阵乘法算法与 PyTorch(cuSPARSE)中实现的算法进行了比较,结果如表 4 所示。可以看到,尽管 PyTorch 中的标准稀疏矩阵乘法并没有比 16 位推理更快,但本文专门设计的稀疏矩阵乘法算法可以提高约 20-30% 的速度。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
测试技术 异构计算
|
1月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
48 5
|
1月前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
1月前
|
并行计算 Linux PyTorch
在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
|
2月前
|
缓存 算法 测试技术
|
3月前
|
机器学习/深度学习 存储 人工智能
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
阿里云的GPU云服务器产品线在深度学习、科学计算、图形渲染等多个领域展现出强大的计算能力和广泛的应用价值。本文将详细介绍阿里云GPU云服务器中的gn6v、gn7i、gn6i三个实例规格族的性能特点、区别及选择参考,帮助用户根据自身需求选择合适的GPU云服务器实例。
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
|
3月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
337 2
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
870 1
|
6月前
|
机器学习/深度学习 并行计算 算法框架/工具
为什么深度学习模型在GPU上运行更快?
为什么深度学习模型在GPU上运行更快?
84 2
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算