基于扩展卡尔曼滤波EKF的语音信号基音估计算法matlab仿真

简介: 基于扩展卡尔曼滤波EKF的语音信号基音估计算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

db767ffae8572e6c02c04682ed6d03ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e984dd18cb63927dacb2166e43942ffb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
基音是语音信号的基本频率成分,它决定了语音的音调和声音的音高。在语音信号处理中,基音估计是一个重要的任务,它可以用于语音合成、语音识别、语音增强等应用。扩展卡尔曼滤波(Extended Kalman Filter, EKF)是一种用于非线性系统的滤波方法,它可以用于基音的估计。

   在语音信号中,周期性的振动成分被称为基音。基音的周期是指相邻两个周期波形的时间间隔,也称为基音周期。频率是指每秒钟振动的周期数,它的倒数称为周期。对于一个周期为T的基音,其频率f = 1/T。基音的频率范围通常在50Hz-500Hz之间。
  卡尔曼滤波(Kalman Filter, KF)是一种用于线性系统的滤波方法,它可以在有噪声的观测数据中,根据已知的系统模型和初始状态,推断出系统的状态。扩展卡尔曼滤波是一种用于非线性系统的滤波方法,它通过在每个时间步骤使用局部线性化来近似非线性系统,并使用卡尔曼滤波来进行状态估计。

  扩展卡尔曼滤波需要一个系统模型,它描述了基音的演化规律。在基音估计中,系统模型可以表示为:

x(k) = A(k-1)x(k-1) + w(k-1)
其中,x(k)表示在时间k时的状态向量,A(k-1)表示状态转移矩阵,w(k-1)表示系统噪声。在基音估计中,状态向量可以表示为:
x(k) = [p(k), T(k)]
其中,p(k)表示基音周期,T(k)表示基音的相位。状态转移矩阵A(k-1)可以表示为:
A(k-1) = [1 0; 0 1]
这个矩阵表示基音周期和相位在每个时间步骤中保持不变。系统噪声w(k-1)可以表示为:
w(k-1) = [w1(k-1), w2(k-1)]
其中,w1(k-1)和w2(k-1)分别表示基音周期和相位的噪声。

     扩展卡尔曼滤波还需要一个观测模型,它描述了观测数据和状态向量之间的关系。在基音估计中,观测模型可以表示为:

y(k) = H(k)x(k) + v(k)
其中,y(k)表示在时间k时的观测向量,H(k)表示观测矩阵,v(k)表示观测噪声。在基音估计中,观测向量可以表示为:
y(k) = [y1(k), y2(k)]
其中,y1(k)和y2(k)分别表示基音周期和相位的观测值。观测矩阵H(k)可以表示为:
H(k) = [1 0; 0 1]
这个矩阵表示我们可以直接观测到基音周期和相位。观测噪声v(k)可以表示为:
v(k) = [v1(k), v2(k)]
其中,v1(k)和v2(k)分别表示基音周期和相位的噪声。

扩展卡尔曼滤波算法可以分为两个步骤:预测和更新。在预测步骤中,我们使用系统模型来预测下一个时间步骤的状态向量和协方差矩阵。在更新步骤中,我们使用观测模型来根据观测数据来更新预测值。下面是扩展卡尔曼滤波算法的详细步骤:

初始化状态向量和协方差矩阵:
x(0) = [p(0), T(0)]
P(0) = diag([p_var(0), T_var(0)])

对于每个时间步骤k:
a. 预测步骤:
根据系统模型,预测下一个时间步骤的状态向量:
x(k|k-1) = A(k-1)x(k-1|k-1)
根据系统模型,预测下一个时间步骤的协方差矩阵:
P(k|k-1) = A(k-1)P(k-1|k-1)A(k-1)^T + Q(k-1)
b. 更新步骤:
计算卡尔曼增益K(k):
K(k) = P(k|k-1)H(k)^T(H(k)P(k|k-1)H(k)^T + R(k))^(-1)
根据观测数据,计算当前时间步骤的状态向量:
x(k|k) = x(k|k-1) + K(k)(y(k) - H(k)x(k|k-1))
根据观测数据,计算当前时间步骤的协方差矩阵:
P(k|k) = (I - K(k)H(k))P(k|k-1)
其中,Q(k-1)表示系统噪声的协方差矩阵,R(k)表示观测噪声的协方差矩阵。对于基音估计,我们可以将Q(k-1)和R(k)设置为常数,如下所示:
Q(k-1) = diag([q1, q2])
R(k) = diag([r1, r2])
其中,q1和q2分别表示基音周期和相位的噪声方差,r1和r2分别表示基音周期和相位的观测噪声方差。

3.MATLAB核心程序
```%pitch tracking
for ii=2:size(datass,2)
%基于先前估计的均值一步预测
One_step_state=F(state(:,ii-1));
P_OneStep(:,:,ii)=F
P(:,:,ii-1)F'+CQC';
H=cos((B
One_step_state)'+pha')G-(GOne_step_state)'diag(sin(BOne_step_state+pha))(B);
O_covariance=(H
P_OneStep(:,:,ii)H'+R);
% Kalman gain
K=P_OneStep(:,:,ii)
H'O_covariance^(-1);
% 计算一步预测残差
h=(G
One_step_state)'cos(BOne_step_state+pha);
correction_factor=K*(datass(:,ii)-h);

state(:,ii)= One_step_state+correction_factor;
P(:,:,ii)  = P_OneStep(:,:,ii)-K*H*P_OneStep(:,:,ii);  

end

%卡尔曼平滑器;
N=size(datass,2);

pitch(:,N) = state(:,N);
P_upS(:,:,N) = P(:,:,N);
for k = (N-1):-1:1
%计算除最后一个步骤外的所有步骤的预测步骤
sgain = (P(:,:,k)F')/(FP(:,:,k)F' + CQC');
pitch(:,k) = state(:,k) + sgain
(pitch(:,k+1) - F(state(:,k)));
P_upS(:,:,k) = P(:,:,k)+ sgain
(P_upS(:,:,k+1) - P_OneStep(:,:,k+1))*sgain';
end

end
```

相关文章
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。