ElasticSearch 之 搜索辅助功能

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: ElasticSearch 之 搜索辅助功能

1. 返回指定的字段

  1. 考虑到性能问题,需要对搜索结果进行“瘦身”——指定返回的字段。
  2. 在ES中,通过_source子句可以设定返回结果的字段。_source指向一个JSON数组,数组中的元素是希望返回的字段名称。
GET /hotel/_search
{
  "_source": [
    "title",
    "city"
  ],
  "query": {
    "term": {
      "city": {
        "value": "北京"
      }
    }
  }
} 


在搜索结果中,每个命中文档的_source结构体中只包含指定的citytitle两个字段的数据。

2. 结果计数

  1. 为提升搜索体验,需要给前端传递搜索匹配结果的文档条数,即需要对搜索结果进行计数。
  2. 针对这个要求,ES提供了_countAPI功能,在该API中,用户提供query子句用于结果匹配,ES会返回匹配的文档条数。
GET /hotel/_count
{
  "query": {
    "term": {
      "city": {
        "value": "北京"
      }
    }
  }
} 


在搜索结果中,每个命中文档的_source结构体中只包含指定的citytitle两个字段的数据。

2. 结果计数

  1. 为提升搜索体验,需要给前端传递搜索匹配结果的文档条数,即需要对搜索结果进行计数。
  2. 针对这个要求,ES提供了_countAPI功能,在该API中,用户提供query子句用于结果匹配,ES会返回匹配的文档条数。
GET /hotel/_count
{
  "query": {
    "term": {
      "city": {
        "value": "北京"
      }
    }
  }
} 


ES不仅返回匹配的文档数量,并且还返回和分片相关的元数据,如总共扫描的分片个数,以及成功、失败、跳过的分片个数等。

3. 结果分页

  1. 在实际的搜索应用中,分页是必不可少的功能。
  2. 在默认情况下,ES返回前10个搜索匹配的文档。
  3. 用户可以通过设置from和size来定义搜索位置和每页显示的文档数量,from表示查询结果的起始下标,默认值为0,size表示从起始下标开始返回的文档个数,默认值为10。
  4. 在默认情况下,用户最多可以取得10 000个文档,即from为0时,size参数最大为10 000,如果请求超过该值,ES返回报错信息。
  5. 对于普通的搜索应用来说,size设为10 000已经足够用了。如果确实需要返回多于10 000条的数据,可以适当修改max_result_window的值。
PUT /hotel/_settings
{
 "index": {
   "max_result_window": 20000
 }
} 

6.注意,如果将配置修改得很大,一定要有足够强大的硬件作为支撑。

7.作为一个分布式搜索引擎,一个ES索引的数据分布在多个分片中,而这些分片又分配在不同的节点上。一个带有分页的搜索请求往往会跨越多个分片,每个分片必须在内存中构建一个长度为from+size的、按照得分排序的有序队列,用以存储命中的文档。然后这些分片对应的队列数据都会传递给协调节点,协调节点将各个队列的数据进行汇总,需要提供一个长度为number_of_shards*(from+size)的队列用以进行全局排序,然后再按照用户的请求从from位置开始查找,找到size个文档后进行返回。基于上述原理,ES不适合深翻页。什么是深翻页呢?简而言之就是请求的from值很大。

当深翻页的请求过多时会增加各个分片所在节点的内存和CPU消耗。尤其是协调节点,随着页码的增加和并发请求的增多,该节点需要对这些请求涉及的分片数据进行汇总和排序,过多的数据会导致协调节点资源耗尽而停止服务。

8.作为搜索引擎,ES更适合的场景是对数据进行搜索,而不是进行大规模的数据遍历。一般情况下,只需要返回前1000条数据即可,没有必要取到10 000条数据。如果确实有大规模数据遍历的需求,可以参考使用scroll模式或者考虑使用其他的存储引擎。


4. 性能分析

  1. 在使用ES的过程中,有的搜索请求的响应可能比较慢,其中大部分的原因是DSL的执行逻辑有问题。
  2. ES提供了profile功能,该功能详细地列出了搜索时每一个步骤的耗时,可以帮助用户对DSL的性能进行剖析。
  3. 开启profile功能只需要在一个正常的搜索请求的DSL中添加"profile":"true"即可。
  4. 在带有profile的返回信息中,除了包含搜索结果外,还包含profile子句,在该子句中展示了搜索过程中各个环节的名称及耗时情况。
  5. 需要注意的是,使用profile功能是有资源损耗的,建议用户只在前期调试的时候使用该功能,在生产中不要开启profile功能。
  6. 因为一个搜索可能会跨越多个分片,所以使用shards数组放在profile子句中。每个shard子句中包含3个元素,分别是id、searches和aggregations。
  7. id表示分片的唯一标识,它的组成形式为[nodeID][indexName][shardID]。
  8. searches以数组的形式存在,因为有的搜索请求会跨多个索引进行搜索。每一个search子元素即为在同一个索引中的子查询,此处不仅返回了该search子元素耗时的信息,而且还返回了搜索“金都”的详细策略,即被拆分成“title:金”和“title:都”两个子查询。同理,children子元素给出了“title:金”、“title:都”的耗时和详细搜索步骤的耗时。
  9. aggregations只有在进行聚合运算时才有内容。
  10. 如果查询比较复杂或者命中的分片比较多,profile返回的信息将特别冗长。在这种情况下,用户进行性能剖析的效率将非常低。
  11. 为此,Kibana提供了可视化的profile功能,该功能建立在ES的profile功能基础上。在Kibana的Dev Tools界面中单击Search Profiler链接,就可以使用可视化的profile了。

5. 评分分析

  1. 在使用搜索引擎时,一般都会涉及排序功能。
  2. 如果用户不指定按照某个字段进行升序或者降序排列,那么ES会使用自己的打分算法对文档进行排序。
  3. 有时我们需要知道某个文档具体的打分详情,以便于对搜索DSL问题展开排查。
  4. ES提供了explain功能来帮助使用者查看搜索时的匹配详情。
GET /${index_name}/_explain/${doc_id} 
{ "query": 
 { //搜索的具体逻辑
 } 
} 
相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
目录
相关文章
|
2月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
2月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 9.1.5 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.1.5 (macOS, Linux, Windows) - 分布式搜索和分析引擎
265 0
|
3月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
293 0
|
存储 自然语言处理 BI
从 Elasticsearch 到 Apache Doris 腾讯音乐内容库升级,统一搜索分析引擎,成本直降 80%
实现写入性能提升 4 倍、使用成本节省达 80% 的显著成效
467 1
从 Elasticsearch 到 Apache Doris 腾讯音乐内容库升级,统一搜索分析引擎,成本直降 80%
|
7月前
|
存储 安全 Linux
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
305 0
|
7月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 8.18 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 8.18 (macOS, Linux, Windows) - 分布式搜索和分析引擎
259 0
|
12月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
665 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
12月前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
564 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
11月前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
343 3
|
11月前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
402 1