m基于多属性决策判决算法的异构网络垂直切换matlab仿真,异构网络为GSM,TDS,LTE

简介: m基于多属性决策判决算法的异构网络垂直切换matlab仿真,异构网络为GSM,TDS,LTE

1.算法仿真效果
matlab2022a仿真结果如下:

461bff736b68b8acffa1d3e0c65243bf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
82a1ac8fd244b86c045abc70288e9791_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e7dec06231f501022efb3ae2b7aaec8d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
异构网络垂直切换是指在不同的移动通信网络之间进行快速自适应切换的技术。在异构网络中,不同类型的网络可能具有不同的带宽、延迟、信号强度等性能指标,因此在不同的应用场景下,需要采用不同的网络来实现最佳的通信效果。异构网络垂直切换技术可以通过多属性决策判决算法来实现。多属性决策判决算法是一种能够将多个属性的权重考虑进来,从而得出一个最优的决策结果的决策分析方法。在异构网络垂直切换中,多属性决策判决算法可以用来确定何时进行网络切换以及切换到哪个网络。

异构网络垂直切换的过程通常包括以下几个步骤:
数据采集:在每个网络中收集一些关于网络性能的数据,例如延迟、带宽、信号强度等。
属性权重确定:确定每个属性的相对重要性,这通常需要依据具体的应用场景和用户需求来确定。
属性归一化:将各属性值转化为0到1之间的数值,方便进行比较和决策。
属性评估:将各属性值进行综合评估,得到一个综合评分,用来表示当前网络的性能。
决策判定:基于综合评分和属性权重,采用多属性决策判决算法计算出最佳网络,并进行切换。
在异构网络垂直切换中,根据具体的应用场景和用户需求,可以选择不同的判定算法和权重系数来实现最佳的切换效果。
多属性决策判决算法
多属性决策判决算法是一种常用的决策分析方法,它可以将多个属性的权重考虑进来,从而得出一个最优的决策结果。在异构网络垂直切换中,多属性决策判决算法可以用来确定何时进行网络切换以及切换到哪个网络。
在多属性决策判决算法中,每个属性都有一个相对权重,这个权重通常取决于属性的重要性。在异构网络垂直切换中,属性可能包括延迟、带宽、信号强度等指标。
假设有n个属性,每个属性的权重为w1, w2, ..., wn,对应的属性值为x1, x2, ..., xn,那么综合评分可以表示为:
Score = w1x1 + w2x2 + ... + wn*xn
其中,Score表示综合评分,wi表示第i个属性的权重,xi表示第i个属性的数值。
在异构网络垂直切换中,综合评分可以用来表示当前网络的性能,从而确定是否需要进行切换。
GSM、TDS和LTE网络的垂直切换
在GSM、TDS和LTE等异构网络中,垂直切换通常需要考虑延迟、带宽、信号强度等多个属性。下面我们将逐一介绍这些属性在切换中的应用。

延迟
延迟是指数据从源到目的地所需的时间,也称为网络延迟或传输延迟。在移动通信网络中,延迟通常由以下因素造成:
信号传输的时间;
数据包在传输过程中需要经过的路由器的数量;数据包在路由器中的缓存时间。
在移动通信中,延迟是一个非常重要的性能指标。如果延迟过高,就会出现视频卡顿、语音延迟等问题。因此,在切换时,需要考虑延迟的大小。
在GSM、TDS和LTE等网络中,延迟通常以毫秒为单位进行测量。延迟越小,网络响应速度就越快,用户体验就越好。在垂直切换中,可以通过将延迟作为一个属性,将其归一化后,加入到多属性决策判决算法中,以确定最佳网络。
带宽
带宽是指网络中可用的传输速率,也称为网络速度。在移动通信网络中,带宽通常受到以下因素的影响:
在移动通信中,带宽是一个非常重要的性能指标。如果带宽过低,就会出现视频卡顿、语音断续等问题。因此,在切换时,需要考虑带宽的大小。

3.MATLAB核心程序

%参数初始化
%设置每个种类的基站的间隔
R_gsm  = 300;       %GSM基站之间的间隔
R_tds  = 700 ;      %TDS基站之间的间隔
R_lte  = 500;       %LTE基站之间的间隔

P_gsm  = [150,0];   %TDLTE2基站坐标
P_tds  = [0,500];   %TDSCDMA基站坐标
P_lte  = [-150,0];  %TDLTE1基站坐标


F_gsm  = 1900*10^6;
F_tds  = 2020*10^6; %TDSCDMA的频率,根据国内指标,均为B频段:2010M~2025M之间
F_lte  = 2600*10^6; %TDLTE的频率,假设是中移动的38号TDLTE频段:2570M~2620M之间 

%主要研究单个UE
Sp_ms  = [5];       %移动设备速度,由于内存限制,这里将速度涉及为整数形式

Pow_tds= 70;        %功率
Pow_lte= 65;        %功率
Pow_gsm= 60;        %功率
ISFAST = 1;         %是否要考虑快衰落情况
%移动设备必须经过的关键点
VP_ms  = [-600,300;   %A
          -290,105;   %B
           -20, 40;   %C
             0, 40;   %D
            20, 40;   %E
           250,120;   %F
           600,500]  ;%G

type   = 1;%业务类型:1:语音业务,2:数据业务,3:视频模型

%各个网络的接入,断开功率门限值
Rss_gsm_in   = -50;%dbm
Rss_gsm_out  = -65;%dbm
Rss_tds_in   = -55;%dbm
Rss_tds_out  = -70;%dbm
Rss_lte_in   = -50;%dbm
Rss_lte_out  = -65;%dbm

%定义用户运动的距离 
Xp           = 0;
Yp           = 0;
%定义仿真时间参数
delta        = 0.01;
Time         = 300;
t            = 0;
%数组计数器
Ind          = 0;
Ind2         = 0;


%接收功率、最大的传输速率、时延、费用价格
%其中接收功率为实测
POW_gsm  = 0;
Rb_gsm   = 8;
DLY_gsm  = 40;
MNY_gsm  = 0.2;

POW_tds  = 0;
Rb_tds   = 1.28;
DLY_tds  = 20;
MNY_tds  = 0.3;

POW_lte  = 0;
Rb_lte   = 8;
DLY_lte  = 45;
MNY_lte  = 0.1;


%接收功率、最大的传输速率、时延、费用价格 
ViewS    = 20;%减小消耗内存,采样显示结果
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
9天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17
|
20天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
21天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
43 10
|
22天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
23天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
24天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。