m基于多属性决策判决算法的异构网络垂直切换matlab仿真,异构网络为GSM,TDS,LTE

简介: m基于多属性决策判决算法的异构网络垂直切换matlab仿真,异构网络为GSM,TDS,LTE

1.算法仿真效果
matlab2022a仿真结果如下:

461bff736b68b8acffa1d3e0c65243bf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
82a1ac8fd244b86c045abc70288e9791_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
e7dec06231f501022efb3ae2b7aaec8d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
异构网络垂直切换是指在不同的移动通信网络之间进行快速自适应切换的技术。在异构网络中,不同类型的网络可能具有不同的带宽、延迟、信号强度等性能指标,因此在不同的应用场景下,需要采用不同的网络来实现最佳的通信效果。异构网络垂直切换技术可以通过多属性决策判决算法来实现。多属性决策判决算法是一种能够将多个属性的权重考虑进来,从而得出一个最优的决策结果的决策分析方法。在异构网络垂直切换中,多属性决策判决算法可以用来确定何时进行网络切换以及切换到哪个网络。

异构网络垂直切换的过程通常包括以下几个步骤:
数据采集:在每个网络中收集一些关于网络性能的数据,例如延迟、带宽、信号强度等。
属性权重确定:确定每个属性的相对重要性,这通常需要依据具体的应用场景和用户需求来确定。
属性归一化:将各属性值转化为0到1之间的数值,方便进行比较和决策。
属性评估:将各属性值进行综合评估,得到一个综合评分,用来表示当前网络的性能。
决策判定:基于综合评分和属性权重,采用多属性决策判决算法计算出最佳网络,并进行切换。
在异构网络垂直切换中,根据具体的应用场景和用户需求,可以选择不同的判定算法和权重系数来实现最佳的切换效果。
多属性决策判决算法
多属性决策判决算法是一种常用的决策分析方法,它可以将多个属性的权重考虑进来,从而得出一个最优的决策结果。在异构网络垂直切换中,多属性决策判决算法可以用来确定何时进行网络切换以及切换到哪个网络。
在多属性决策判决算法中,每个属性都有一个相对权重,这个权重通常取决于属性的重要性。在异构网络垂直切换中,属性可能包括延迟、带宽、信号强度等指标。
假设有n个属性,每个属性的权重为w1, w2, ..., wn,对应的属性值为x1, x2, ..., xn,那么综合评分可以表示为:
Score = w1x1 + w2x2 + ... + wn*xn
其中,Score表示综合评分,wi表示第i个属性的权重,xi表示第i个属性的数值。
在异构网络垂直切换中,综合评分可以用来表示当前网络的性能,从而确定是否需要进行切换。
GSM、TDS和LTE网络的垂直切换
在GSM、TDS和LTE等异构网络中,垂直切换通常需要考虑延迟、带宽、信号强度等多个属性。下面我们将逐一介绍这些属性在切换中的应用。

延迟
延迟是指数据从源到目的地所需的时间,也称为网络延迟或传输延迟。在移动通信网络中,延迟通常由以下因素造成:
信号传输的时间;
数据包在传输过程中需要经过的路由器的数量;数据包在路由器中的缓存时间。
在移动通信中,延迟是一个非常重要的性能指标。如果延迟过高,就会出现视频卡顿、语音延迟等问题。因此,在切换时,需要考虑延迟的大小。
在GSM、TDS和LTE等网络中,延迟通常以毫秒为单位进行测量。延迟越小,网络响应速度就越快,用户体验就越好。在垂直切换中,可以通过将延迟作为一个属性,将其归一化后,加入到多属性决策判决算法中,以确定最佳网络。
带宽
带宽是指网络中可用的传输速率,也称为网络速度。在移动通信网络中,带宽通常受到以下因素的影响:
在移动通信中,带宽是一个非常重要的性能指标。如果带宽过低,就会出现视频卡顿、语音断续等问题。因此,在切换时,需要考虑带宽的大小。

3.MATLAB核心程序

%参数初始化
%设置每个种类的基站的间隔
R_gsm  = 300;       %GSM基站之间的间隔
R_tds  = 700 ;      %TDS基站之间的间隔
R_lte  = 500;       %LTE基站之间的间隔

P_gsm  = [150,0];   %TDLTE2基站坐标
P_tds  = [0,500];   %TDSCDMA基站坐标
P_lte  = [-150,0];  %TDLTE1基站坐标


F_gsm  = 1900*10^6;
F_tds  = 2020*10^6; %TDSCDMA的频率,根据国内指标,均为B频段:2010M~2025M之间
F_lte  = 2600*10^6; %TDLTE的频率,假设是中移动的38号TDLTE频段:2570M~2620M之间 

%主要研究单个UE
Sp_ms  = [5];       %移动设备速度,由于内存限制,这里将速度涉及为整数形式

Pow_tds= 70;        %功率
Pow_lte= 65;        %功率
Pow_gsm= 60;        %功率
ISFAST = 1;         %是否要考虑快衰落情况
%移动设备必须经过的关键点
VP_ms  = [-600,300;   %A
          -290,105;   %B
           -20, 40;   %C
             0, 40;   %D
            20, 40;   %E
           250,120;   %F
           600,500]  ;%G

type   = 1;%业务类型:1:语音业务,2:数据业务,3:视频模型

%各个网络的接入,断开功率门限值
Rss_gsm_in   = -50;%dbm
Rss_gsm_out  = -65;%dbm
Rss_tds_in   = -55;%dbm
Rss_tds_out  = -70;%dbm
Rss_lte_in   = -50;%dbm
Rss_lte_out  = -65;%dbm

%定义用户运动的距离 
Xp           = 0;
Yp           = 0;
%定义仿真时间参数
delta        = 0.01;
Time         = 300;
t            = 0;
%数组计数器
Ind          = 0;
Ind2         = 0;


%接收功率、最大的传输速率、时延、费用价格
%其中接收功率为实测
POW_gsm  = 0;
Rb_gsm   = 8;
DLY_gsm  = 40;
MNY_gsm  = 0.2;

POW_tds  = 0;
Rb_tds   = 1.28;
DLY_tds  = 20;
MNY_tds  = 0.3;

POW_lte  = 0;
Rb_lte   = 8;
DLY_lte  = 45;
MNY_lte  = 0.1;


%接收功率、最大的传输速率、时延、费用价格 
ViewS    = 20;%减小消耗内存,采样显示结果
相关文章
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
存储 边缘计算 运维
移动LTE背后:核心网络详解
移动LTE背后:核心网络详解
21 4
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
26 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
27天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。

热门文章

最新文章