图解transformer中的自注意力机制

简介: 本文将将介绍注意力的概念从何而来,它是如何工作的以及它的简单的实现。

注意力机制

在整个注意力过程中,模型会学习了三个权重:查询、键和值。查询、键和值的思想来源于信息检索系统。所以我们先理解数据库查询的思想。

假设有一个数据库,里面有所有一些作家和他们的书籍信息。现在我想读一些Rabindranath写的书:

在数据库中,作者名字类似于键,图书类似于值。查询的关键词Rabindranath是这个问题的键。所以需要计算查询和数据库的键(数据库中的所有作者)之间的相似度,然后返回最相似作者的值(书籍)。

同样,注意力有三个矩阵,分别是查询矩阵(Q)、键矩阵(K)和值矩阵(V)。它们中的每一个都具有与输入嵌入相同的维数。模型在训练中学习这些度量的值。

我们可以假设我们从每个单词中创建一个向量,这样我们就可以处理信息。对于每个单词,生成一个512维的向量。所有3个矩阵都是512x512(因为单词嵌入的维度是512)。对于每个标记嵌入,我们将其与所有三个矩阵(Q, K, V)相乘,每个标记将有3个长度为512的中间向量。

接下来计算分数,它是查询和键向量之间的点积。分数决定了当我们在某个位置编码单词时,对输入句子的其他部分的关注程度。

然后将点积除以关键向量维数的平方根。这种缩放是为了防止点积变得太大或太小(取决于正值或负值),因为这可能导致训练期间的数值不稳定。选择比例因子是为了确保点积的方差近似等于1。

然后通过softmax操作传递结果。这将分数标准化:它们都是正的,并且加起来等于1。softmax输出决定了我们应该从不同的单词中获取多少信息或特征(值),也就是在计算权重。

这里需要注意的一点是,为什么需要其他单词的信息/特征?因为我们的语言是有上下文含义的,一个相同的单词出现在不同的语境,含义也不一样。

最后一步就是计算softmax与这些值的乘积,并将它们相加。

可视化图解

上面逻辑都是文字内容,看起来有一些枯燥,下面我们可视化它的矢量化实现。这样可以更加深入的理解。

查询键和矩阵的计算方法如下

同样的方法可以计算键向量和值向量。

最后计算得分和注意力输出。

简单代码实现

 importtorch
 importtorch.nnasnn
 fromtypingimportList

 defget_input_embeddings(words: List[str], embeddings_dim: int):
     # we are creating random vector of embeddings_dim size for each words
     # normally we train a tokenizer to get the embeddings.
     # check the blog on tokenizer to learn about this part
     embeddings= [torch.randn(embeddings_dim) forwordinwords]
     returnembeddings


 text="I should sleep now"
 words=text.split(" ")
 len(words) # 4


 embeddings_dim=512# 512 dim because the original paper uses it. we can use other dim also
 embeddings=get_input_embeddings(words, embeddings_dim=embeddings_dim)
 embeddings[0].shape# torch.Size([512])


 # initialize the query, key and value metrices 
 query_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 key_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 value_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 query_matrix.weight.shape, key_matrix.weight.shape, value_matrix.weight.shape# torch.Size([512, 512]), torch.Size([512, 512]), torch.Size([512, 512])


 # query, key and value vectors computation for each words embeddings
 query_vectors=torch.stack([query_matrix(embedding) forembeddinginembeddings])
 key_vectors=torch.stack([key_matrix(embedding) forembeddinginembeddings])
 value_vectors=torch.stack([value_matrix(embedding) forembeddinginembeddings])
 query_vectors.shape, key_vectors.shape, value_vectors.shape# torch.Size([4, 512]), torch.Size([4, 512]), torch.Size([4, 512])


 # compute the score
 scores=torch.matmul(query_vectors, key_vectors.transpose(-2, -1)) /torch.sqrt(torch.tensor(embeddings_dim, dtype=torch.float32))
 scores.shape# torch.Size([4, 4])


 # compute the attention weights for each of the words with the other words
 softmax=nn.Softmax(dim=-1)
 attention_weights=softmax(scores)
 attention_weights.shape# torch.Size([4, 4])


 # attention output
 output=torch.matmul(attention_weights, value_vectors)
 output.shape# torch.Size([4, 512])

以上代码只是为了展示注意力机制的实现,并未优化。

多头注意力

上面提到的注意力是单头注意力,在原论文中有8个头。对于多头和单多头注意力计算相同,只是查询(q0-q3),键(k0-k3),值(v0-v3)中间向量会有一些区别。

之后将查询向量分成相等的部分(有多少头就分成多少)。在上图中有8个头,查询,键和值向量的维度为512。所以就变为了8个64维的向量。

把前64个向量放到第一个头,第二组向量放到第二个头,以此类推。在上面的图片中,我只展示了第一个头的计算。

这里需要注意的是:不同的框架有不同的实现方法,pytorch官方的实现是上面这种,但是tf和一些第三方的代码中是将每个头分开计算了,比如8个头会使用8个linear(tf的dense)而不是一个大linear再拆解。还记得Pytorch的transformer里面要求emb_dim能被num_heads整除吗,就是因为这个

使用哪种方式都可以,因为最终的结果都类似影响不大。

当我们在一个head中有了小查询、键和值(64 dim的)之后,计算剩下的逻辑与单个head注意相同。最后得到的64维的向量来自每个头。

我们将每个头的64个输出组合起来,得到最后的512个dim输出向量。

多头注意力可以表示数据中的复杂关系。每个头都能学习不同的模式。多个头还提供了同时处理输入表示的不同子空间(本例:64个向量表示512个原始向量)的能力。

多头注意代码实现

 num_heads=8
 # batch dim is 1 since we are processing one text.
 batch_size=1

 text="I should sleep now"
 words=text.split(" ")
 len(words) # 4


 embeddings_dim=512
 embeddings=get_input_embeddings(words, embeddings_dim=embeddings_dim)
 embeddings[0].shape# torch.Size([512])


 # initialize the query, key and value metrices 
 query_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 key_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 value_matrix=nn.Linear(embeddings_dim, embeddings_dim)
 query_matrix.weight.shape, key_matrix.weight.shape, value_matrix.weight.shape# torch.Size([512, 512]), torch.Size([512, 512]), torch.Size([512, 512])


 # query, key and value vectors computation for each words embeddings
 query_vectors=torch.stack([query_matrix(embedding) forembeddinginembeddings])
 key_vectors=torch.stack([key_matrix(embedding) forembeddinginembeddings])
 value_vectors=torch.stack([value_matrix(embedding) forembeddinginembeddings])
 query_vectors.shape, key_vectors.shape, value_vectors.shape# torch.Size([4, 512]), torch.Size([4, 512]), torch.Size([4, 512])


 # (batch_size, num_heads, seq_len, embeddings_dim)
 query_vectors_view=query_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2) 
 key_vectors_view=key_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2) 
 value_vectors_view=value_vectors.view(batch_size, -1, num_heads, embeddings_dim//num_heads).transpose(1, 2) 
 query_vectors_view.shape, key_vectors_view.shape, value_vectors_view.shape
 # torch.Size([1, 8, 4, 64]),
 #  torch.Size([1, 8, 4, 64]),
 #  torch.Size([1, 8, 4, 64])


 # We are splitting the each vectors into 8 heads. 
 # Assuming we have one text (batch size of 1), So we split 
 # the embedding vectors also into 8 parts. Each head will 
 # take these parts. If we do this one head at a time.
 head1_query_vector=query_vectors_view[0, 0, ...]
 head1_key_vector=key_vectors_view[0, 0, ...]
 head1_value_vector=value_vectors_view[0, 0, ...]
 head1_query_vector.shape, head1_key_vector.shape, head1_value_vector.shape


 # The above vectors are of same size as before only the feature dim is changed from 512 to 64
 # compute the score
 scores_head1=torch.matmul(head1_query_vector, head1_key_vector.permute(1, 0)) /torch.sqrt(torch.tensor(embeddings_dim//num_heads, dtype=torch.float32))
 scores_head1.shape# torch.Size([4, 4])


 # compute the attention weights for each of the words with the other words
 softmax=nn.Softmax(dim=-1)
 attention_weights_head1=softmax(scores_head1)
 attention_weights_head1.shape# torch.Size([4, 4])

 output_head1=torch.matmul(attention_weights_head1, head1_value_vector)
 output_head1.shape# torch.Size([4, 512])


 # we can compute the output for all the heads
 outputs= []
 forhead_idxinrange(num_heads):
     head_idx_query_vector=query_vectors_view[0, head_idx, ...]
     head_idx_key_vector=key_vectors_view[0, head_idx, ...]
     head_idx_value_vector=value_vectors_view[0, head_idx, ...]
     scores_head_idx=torch.matmul(head_idx_query_vector, head_idx_key_vector.permute(1, 0)) /torch.sqrt(torch.tensor(embeddings_dim//num_heads, dtype=torch.float32))

     softmax=nn.Softmax(dim=-1)
     attention_weights_idx=softmax(scores_head_idx)
     output=torch.matmul(attention_weights_idx, head_idx_value_vector)
     outputs.append(output)

 [out.shapeforoutinoutputs]
 # [torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64]),
 #  torch.Size([4, 64])]

 # stack the result from each heads for the corresponding words
 word0_outputs=torch.cat([out[0] foroutinoutputs])
 word0_outputs.shape

 # lets do it for all the words
 attn_outputs= []
 foriinrange(len(words)):
     attn_output=torch.cat([out[i] foroutinoutputs])
     attn_outputs.append(attn_output)
 [attn_output.shapeforattn_outputinattn_outputs] # [torch.Size([512]), torch.Size([512]), torch.Size([512]), torch.Size([512])]


 # Now lets do it in vectorize way. 
 # We can not permute the last two dimension of the key vector.
 key_vectors_view.permute(0, 1, 3, 2).shape# torch.Size([1, 8, 64, 4])


 # Transpose the key vector on the last dim
 score=torch.matmul(query_vectors_view, key_vectors_view.permute(0, 1, 3, 2)) # Q*k
 score=torch.softmax(score, dim=-1)


 # reshape the results 
 attention_results=torch.matmul(score, value_vectors_view)
 attention_results.shape# [1, 8, 4, 64]

 # merge the results
 attention_results=attention_results.permute(0, 2, 1, 3).contiguous().view(batch_size, -1, embeddings_dim)
 attention_results.shape# torch.Size([1, 4, 512])

总结

注意力机制(attention mechanism)是Transformer模型中的重要组成部分。Transformer是一种基于自注意力机制(self-attention)的神经网络模型,广泛应用于自然语言处理任务,如机器翻译、文本生成和语言模型等。本文介绍的自注意力机制是Transformer模型的基础,在此基础之上衍生发展出了各种不同的更加高效的注意力机制,所以深入了解自注意力机制,将能够更好地理解Transformer模型的设计原理和工作机制,以及如何在具体的各种任务中应用和调整模型。这将有助于你更有效地使用Transformer模型并进行相关研究和开发。

最后有兴趣的可以看看这个,它里面包含了pytorch的transformer的完整实现:

https://avoid.overfit.cn/post/c3f0da0fd4bd4151a8f79741ebc09937

作者:Souvik Mandal

目录
相关文章
|
6月前
|
机器学习/深度学习 关系型数据库 MySQL
大模型中常用的注意力机制GQA详解以及Pytorch代码实现
GQA是一种结合MQA和MHA优点的注意力机制,旨在保持MQA的速度并提供MHA的精度。它将查询头分成组,每组共享键和值。通过Pytorch和einops库,可以简洁实现这一概念。GQA在保持高效性的同时接近MHA的性能,是高负载系统优化的有力工具。相关论文和非官方Pytorch实现可进一步探究。
835 4
|
6月前
|
机器学习/深度学习 人工智能 数据可视化
图解Transformer——注意力计算原理
图解Transformer——注意力计算原理
156 0
|
6月前
|
机器学习/深度学习 Ruby
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
693 0
|
6月前
|
机器学习/深度学习 Ruby
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
347 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
93 10
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
YOLOv5改进 | 注意力机制 | 添加三重注意力机制 TripletAttention【完整代码】
本文介绍了三重注意力机制在YOLOv5目标检测中的应用,这是一种轻量级方法,通过三分支结构捕获跨维度交互来计算注意力权重,几乎不增加计算开销。文章详细阐述了三重注意力的原理,包括全局、组间和组内三个层次的注意力计算,并提供了将TripletAttention模块添加到YOLOv5网络的教程。作者提供了代码实现和yaml配置文件的修改指导,以及在训练脚本中设置配置文件路径的步骤。完整代码附在文章末尾,适合初学者实践。此外,文章还鼓励读者探索在不同位置添加三重注意力以进一步优化模型性能。
|
6月前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:注意力机制(Attention)
使用Python实现深度学习模型:注意力机制(Attention)
348 0
使用Python实现深度学习模型:注意力机制(Attention)
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
一文搞懂Transformer架构的三种注意力机制
一文搞懂Transformer架构的三种注意力机制
624 1
|
6月前
|
机器学习/深度学习 缓存 自然语言处理
从头开始构建 Transformer: 注意力机制
从头开始构建 Transformer: 注意力机制
93 0