YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)

简介: YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)

一、本文介绍

本文给家大家带来的改进机制是iRMB,其是在论文Rethinking Mobile Block for Efficient Attention-based Models种提出,论文提出了一个新的主干网络EMO(后面我也会教大家如何使用该主干,本文先教大家使用该文中提出的注意力机制)。其主要思想是将轻量级的CNN架构与基于注意力的模型结构相结合(有点类似ACmix),我将iRMB和C2f结合,然后也将其用在了检测头种进行尝试,三种结果进行对比,针对的作用也不相同,但是无论那种实验均有一定涨点效果,同时该注意力机制属于是比较轻量化的参数量比较小,训练速度也很快,后面我会将各种添加方法教给大家,让大家在自己的模型中进行复现。

image.png

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、iRMB的框架原理

image.png


iRMB(Inverted Residual Mobile Block)的主要思想是将轻量级的CNN架构与基于注意力的模型结构相结合(有点类似ACmix),以创建高效的移动网络。iRMB通过重新考虑倒置残差块(IRB)和Transformer的有效组件,实现了一种统一的视角,从而扩展了CNN的IRB到基于注意力的模型。iRMB的设计目标是在保持模型轻量级的同时,实现对计算资源的有效利用和高准确率。这一方法通过在下游任务上的广泛实验得到验证,展示出其在轻量级模型领域的优越性能。

iRMB的主要创新点在于以下三点:

1. 结合CNN的轻量级特性和Transformer的动态模型能力,创新提出了iRMB结构,适用于移动设备上的密集预测任务。

2. 使用倒置残差块设计,扩展了传统CNN的IRB到基于注意力的模型,增强了模型处理长距离信息的能力。

3. 提出了元移动块(Meta-Mobile Block),通过不同的扩展比率和高效操作符,实现了模型的模块化设计,使得模型更加灵活和高效。

2.1 iRMB结构

iRMB 结构的主要创新点是它结合了卷积神经网络(CNN)的轻量级特性和 Transformer 模型的动态处理能力。这种结构特别适用于移动设备上的密集预测任务,因为它旨在在计算能力有限的环境中提供高效的性能。iRMB 通过其倒置残差设计改进了信息流的处理,允许在保持模型轻量的同时捕捉和利用长距离依赖,这对于图像分类、对象检测和语义分割等任务至关重要。这种设计使得模型在资源受限的设备上也能高效运行,同时保持或提高预测准确性。

image.png

上面的图片来自与论文的图片2展示了iRMB(Inverted Residual Mobile Block)的设计理念和结构。左侧是从多头自注意力和前馈网络中抽象出的统一元移动块(Meta-Mobile Block),它将不同扩展比率和高效操作符结合起来,形成特定的模块。右侧是基于iRMB构建的类似ResNet的高效模型(EMO),它仅由推导出的iRMB组成,并用于各种下游任务,如分类(CLS)、检测(Det)和分割(Seg)。这种设计实现了模型的轻量化,同时保持了良好的性能和效率。

image.png

这幅图展示了iRMB(Inverted Residual Mobile Block)的结构范式。iRMB是一种混合网络模块,它结合了深度可分离卷积(3x3 DW-Conv)和自注意力机制。1x1卷积用于通道数的压缩和扩张,以此优化计算效率。深度可分离卷积(DW-Conv)用于捕捉空间特征,而注意力机制则用于捕获特征间的全局依赖关系。

2.2 倒置残差块

在iRMB设计中,使用倒置残差块(IRB)的概念被扩展到了基于注意力的模型中。这使得模型能够更有效地处理长距离信息,这是因为自注意力机制能够捕获输入数据中不同部分之间的全局依赖关系。传统的CNN通常只能捕捉到局部特征,而通过引入注意力机制,iRMB能够在提取特征时考虑到整个输入空间,增强了模型对复杂数据模式的理解能力,特别是在处理视觉和序列数据时。这种结合了传统CNN的轻量化和Transformer的长距离建模能力的设计,为在资源受限的环境中实现高效的深度学习模型提供了新的可能性(文章中并没有关于IRB的结构图)。

2.3 元移动块(Meta-Mobile Block)

元移动块(Meta-Mobile Block),它通过不同的扩展比率和高效操作符实现模块化设计。这种方法使得模型可以根据需要调整其容量,而无需重新设计整个网络。元移动块的核心理念是通过可插拔的方式,将不同的操作如卷积、自注意力等集成到一个统一的框架中,从而提高模型的效率和灵活性。这允许模型在复杂性和计算效率之间进行更好的权衡,特别适用于那些需要在有限资源下运行的应用。

image.png

图中展示的是Meta Mobile Block的设计。在这个构件中,1x1的卷积层被用来改变特征图的通道数,从而控制网络的容量。中间的“Efficient Operator”是一个高效的运算符,可以是自注意力机制或其他任何高效的层或操作。这种设计使得Meta Mobile Block能够灵活地适应不同的任务需求,并保持高效的计算性能。通过这样的模块化,网络能够在不同的环境和任务中进行快速调整和优化。

目录
相关文章
|
8月前
|
机器学习/深度学习
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
391 1
|
8月前
|
机器学习/深度学习 Ruby
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
396 0
|
8月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
481 0
|
机器学习/深度学习 人工智能 自然语言处理
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
5628 0
|
2月前
|
机器学习/深度学习 计算机视觉 Ruby
【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力
【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力本文提出了一种新的轻量级密集预测模型EMO,结合高效的倒置残差块(IRB)和Transformer组件,设计了单残差元移动块(MMB)和倒置残差移动块(iRMB)。EMO在ImageNet-1K、COCO2017和ADE20K基准上表现出色,参数、效率和准确度达到良好平衡,尤其在iPhone14上运行速度比EdgeNeXt快2.8-4.0倍。
【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力
|
6月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点
YOLOv8专栏探讨了YOLO系列的创新改进,提出RCS-YOLO模型,它在脑肿瘤检测中超越YOLOv6/v7/v8,精度提升1%,速度增快60%(达到114.8 FPS)。RCS-OSA模块结合RepVGG/ShuffleNet优点,通过通道重参数化和混洗优化卷积,提升速度和准确性。代码和论文可在提供的链接获取。
|
6月前
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
6月前
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
6月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv10改进-注意力机制】MSCAAttention多尺度卷积注意力
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
976 0