无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

简介: 无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Investigating the Unmanned Aerial Vehicle (UAV) assisted 5G communications in the form of flying base stations (FBSs). The techniques deployed include assessing, improving, and developing optimization methods to route drones that carry Flying Base Station (FBS) enhancing the terrestrial 5G network infrastructure. One way being effectively collecting and transmitting data through line of sight (LoS) communication to support flash crowds, machine type communication (IoTs), analysis of energy consumption, and total time to complete the tasks.

⛄ 部分代码

xv1 = [2 -2 4];

yv1 = [2 2 5.464];


xv2=[2 4 4];

yv2=[2 -1.4642 5.464];


xv3=[2 -2 4];

yv3=[2 2 -1.4642];


fx=[2,4]    

fy=[2,5.464]


%these coordinates represent traingle and the tangent in the three drone

%case


lx=[2,2];%lx and ly represent the two axis that cut the circle into 4 parts

ly=[0,4];


velocity=60 %velocity of the drone is 60m/s

power= 50   %power of the drone is 50W


 

d=zeros(5,1)



n=50; % number of points that you want

center = [2 ,2]; % center coordinates of the circle [x0,y0]

radius = 2; % radius of the circle

angle = 2*pi*rand(n,1);


rng(1)%fixes the points

r = radius*sqrt(rand(n,1));


 

x = center(1)+r.*cos(angle) ;%x coordinates of the points inscribed in my circle

y = center(2)+r.*sin(angle);%y coordinates of the points inscribed in my circle

x(1)=2;

y(1)=2;%center of the circle coordinates which is the base station in our case where the drone should launch from

v=[x,y]



%first case when we have one drone


   figure(1)

   plot( x, y, 'r*');

   axis equal

   X = v;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)%the 2opt algorithm

   figure(2)

   tspplot(p,X,1)

   opts = statset('Display','final');

   distance_to_finish_the_task1=d1*1000

   time_to_finish_the_task1=distance_to_finish_the_task1/velocity  

   distance_onedrone=d1*1000

   time1=distance_onedrone/velocity

 

   energy_consumption1=power*(distance_onedrone/velocity)

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   figure(3)

   plot( x, y,'r*',ly,lx, 'r-');

   axis equal

   x_center = 2;

   y_center = 2;% coordinates of the center of the circle


   b=v(:,2);% each drone is going through one part of the circle the upper part for y>2 and lower part y<2 that is why the y coordinates are being called

   

   X = v( b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(4)

   tspplot(p,X,1)


   X =  v( b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(5)

   tspplot(p,X,1)


   opts = statset('Display','final');

 

   

   

    distance2=[d1*1000 d2*1000];

   distance_to_finish_the_task2=max(distance2);

   time_to_finish_the_task2=distance_to_finish_the_task2/velocity;

   

   distance_twodrones=(d1+d2)*1000;

   time2=((d1*1000/velocity)+(d2*1000/velocity))/2;

   energy_consumption2=power*(distance_twodrones/velocity);

   


 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   


 

figure(6)


plot( x, y,'r*',xv3,yv3,'.-r',xv1,yv1,'.-r',xv2,yv2,'.-r',fx,fy, 'r-')

axis equal



a=v(:,1);

b=v(:,2);

in = inpolygon(a,b,xv1,yv1);


g= [a(in),b(in)]

   

   X=g;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(7)

   tspplot(p,X,1)



in = inpolygon(a,b,xv2,yv2);  

 l= [a(in),b(in)]

 

   X =  l;

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(8)

   tspplot(p,X,1)

 


  in = inpolygon(a,b,xv3,yv3);  

  m= [a(in),b(in)]

 


   

   X = m;

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(9)

   tspplot(p,X,1)

 

   opts = statset('Display','final');

   

   

 

   

   

   

   

 

   distance3=[d1*1000 d2*1000 d3*1000]

   distance_to_finish_the_task3=max(distance3)

   time_to_finish_the_task3=distance_to_finish_the_task3/velocity

   distance_threedrones=(d1+d2+d3)*1000

   time3=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity))/3

   energy_consumption3=power*(distance_threedrones/velocity)

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






   X = v(a<=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(10)

   tspplot(p,X,1)

 

   X =  v(a<=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(11)

   tspplot(p,X,1)

 


   

   X = v(a>=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(12)

   tspplot(p,X,1)

 



   

   X = v(a>=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d4] = tspsearch(X,s)

   figure(13)

   tspplot(p,X,1)

   

   opts = statset('Display','final');

   

   


   distance4=[d1*1000 d2*1000 d3*1000 d4*1000];

   distance_to_finish_the_task4=max(distance4);

   time_to_finish_the_task4= distance_to_finish_the_task4/velocity;

   

   

   

   distance_fourdrones=(d1+d2+d3+d4)*1000;

   time4=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity)+(d4*1000/velocity))/4;

   

   energy_consumption4=power*(distance_fourdrones/velocity);

   

   

   



number_of_drones = {'1drone';'2drones';'3drones';'4drones'}

distance = [distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];

time = [time1;time2;time3;time4];

energy_consumption = [energy_consumption1;energy_consumption2;energy_consumption3;energy_consumption4];



time_to_finish_the_task=[time_to_finish_the_task1;time_to_finish_the_task2;time_to_finish_the_task3;time_to_finish_the_task4];

distance_to_finish_the_task=[distance_to_finish_the_task1;distance_to_finish_the_task2;distance_to_finish_the_task3;distance_to_finish_the_task4];



xorigin=xlim %starting from zero

yorigin=ylim %starting from zero




drones_1dist=sqrt(((time1-xorigin(1))^2 )+((energy_consumption1-yorigin(1))^2))


drones_2dist=sqrt(((time2-xorigin(1))^2 )+((energy_consumption2-yorigin(1))^2))


drones_3dist=sqrt(((time3-xorigin(1))^2 )+((energy_consumption3-yorigin(1))^2))


drones_4dist=sqrt(((time4-xorigin(1))^2 )+((energy_consumption4-yorigin(1))^2))

trade_off=[drones_1dist;drones_2dist;drones_3dist;drones_4dist]


best_trade_off=min([drones_2dist,drones_3dist,drones_1dist,drones_4dist])


table = array2table(trade_off);

table.Properties.VariableNames = {'distance_fourdrones'}

bar(trade_off)

%%%%%

timee= 7 + (9-7).*rand(n,1)

hovering_time=sum(timee)


total_energy_consumption1=power*((distance_onedrone/velocity)+hovering_time);

total_energy_consumption2=power*((distance_twodrones/velocity)+hovering_time);

total_energy_consumption3=power*((distance_threedrones/velocity)+hovering_time);

total_energy_consumption4=power*((distance_fourdrones/velocity)+hovering_time);


total_energy_consumption=[total_energy_consumption1;total_energy_consumption2;total_energy_consumption3;total_energy_consumption4];

total_time=[time1+hovering_time;time2+hovering_time;time3+hovering_time;time4+hovering_time];

total_time_to_finish_the_task=[time_to_finish_the_task1+hovering_time;time_to_finish_the_task2+hovering_time;time_to_finish_the_task3+hovering_time;time_to_finish_the_task4+hovering_time];

D=[distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];


drone_one1=[time1;time_to_finish_the_task1];

drone_one2=[time2;time_to_finish_the_task2];

drone_one3=[time3;time_to_finish_the_task3];

drone_one4=[time4;time_to_finish_the_task4];

data = [drone_one1 drone_one2 drone_one3 drone_one4 ];

figure(14)

hb = bar(data)

set(hb(1), 'FaceColor','r')

set(hb(2), 'FaceColor','b')

set(hb(3), 'FaceColor','g')

set(hb(4), 'FaceColor','y')

ylabel('Time in sec');

set(gca,'XTickLabel',{'average time spent by the drones','time to complete the task'})

set(hb, {'DisplayName'}, {'one drone','two drones','three drones','four drones'}')

legend()

figure(15)


labels = {'one drone','two drones','three drones','four drones'};


plot(total_time_to_finish_the_task,distance_to_finish_the_task,'o',total_time_to_finish_the_task,distance_to_finish_the_task)

text(total_time_to_finish_the_task,distance_to_finish_the_task,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Distance Covered by the UAV with the Longest Route');

xlabel('Time to complete the task in sec');


figure(16)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time_to_finish_the_task,total_energy_consumption,'o',total_time_to_finish_the_task,total_energy_consumption)

text(total_time_to_finish_the_task,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules');

xlabel('Time to complete the Task by the UAVs in sec');



figure(17)

labels = {'one drone','two drones','three drones','four drones'};

plot(time,energy_consumption,'o',time,energy_consumption)

ylabel('Energy Consumption in Joules Excluding Houvering Energy');

xlabel('Time to Complete the Task by the Drones in sec Excluding houvering time');

text(time,energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')




figure(18)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time,total_energy_consumption,'o',total_time,total_energy_consumption)

text(total_time,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules ');

xlabel('Average Time Spent by the UAVs in sec');




figure(19)


[maxBar,maxIndex] = max(trade_off);

[minBar,minIndex] = min(trade_off);

figure(100)

bar(trade_off)


text(minIndex-0.5,minBar+5,'Best Trade Off')

set(gca,'XTickLabel',{'one drone','two drones','three drone','four drones'})

xtickangle(45)

xlabel('Number of Drones');

ylabel('Euclidean Distance From the Origin to Each Drone in Meters')

 

title('Best Trade off')

box off

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1月前
|
边缘计算 运维 5G
5G承载网是5G无线接入网与核心网之间的通信管道,负责高效传输数据,保障高速率、低时延和高可靠性
5G承载网是5G无线接入网与核心网之间的通信管道,负责高效传输数据,保障高速率、低时延和高可靠性。关键技术包括灵活以太网、网络切片、光传输和智能管控,支持多样化业务需求。未来将更加智能化、融合化和绿色节能,推动5G网络的快速发展。
158 4
|
3月前
|
机器学习/深度学习 5G
5G中的调制技术:从QPSK到256QAM,赋能高速率通信
5G中的调制技术:从QPSK到256QAM,赋能高速率通信
862 5
|
1月前
|
传感器 自动驾驶 物联网
探秘 5G 核心网络之 5G RAN:开启高速通信新时代
探秘 5G 核心网络之 5G RAN:开启高速通信新时代
65 4
|
1月前
|
传感器 监控 自动驾驶
|
2月前
|
机器学习/深度学习 人工智能 算法
|
1月前
|
边缘计算 5G 数据处理
5G网络能耗管理:绿色通信的实践
【10月更文挑战第30天】
50 0
|
2月前
|
安全 物联网 5G
无线网络技术:5G之后的通信革命
【10月更文挑战第16天】本文探讨了5G之后无线网络技术的发展趋势,涵盖5G-A、Wi-Fi 7及未来通信技术展望。5G-A提升了网络速度、时延和连接数,Wi-Fi 7则在性能和可靠性上大幅跃升,未来通信技术将朝向更高速度、更低延迟、更广覆盖方向发展。
|
2月前
|
5G 网络性能优化 网络安全
|
2月前
|
安全 网络协议 5G
|
2月前
|
运维 物联网 5G
5G网络的多接入技术融合:构建无缝通信未来
5G网络的多接入技术融合:构建无缝通信未来
212 4

热门文章

最新文章