无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

简介: 无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Investigating the Unmanned Aerial Vehicle (UAV) assisted 5G communications in the form of flying base stations (FBSs). The techniques deployed include assessing, improving, and developing optimization methods to route drones that carry Flying Base Station (FBS) enhancing the terrestrial 5G network infrastructure. One way being effectively collecting and transmitting data through line of sight (LoS) communication to support flash crowds, machine type communication (IoTs), analysis of energy consumption, and total time to complete the tasks.

⛄ 部分代码

xv1 = [2 -2 4];

yv1 = [2 2 5.464];


xv2=[2 4 4];

yv2=[2 -1.4642 5.464];


xv3=[2 -2 4];

yv3=[2 2 -1.4642];


fx=[2,4]    

fy=[2,5.464]


%these coordinates represent traingle and the tangent in the three drone

%case


lx=[2,2];%lx and ly represent the two axis that cut the circle into 4 parts

ly=[0,4];


velocity=60 %velocity of the drone is 60m/s

power= 50   %power of the drone is 50W


 

d=zeros(5,1)



n=50; % number of points that you want

center = [2 ,2]; % center coordinates of the circle [x0,y0]

radius = 2; % radius of the circle

angle = 2*pi*rand(n,1);


rng(1)%fixes the points

r = radius*sqrt(rand(n,1));


 

x = center(1)+r.*cos(angle) ;%x coordinates of the points inscribed in my circle

y = center(2)+r.*sin(angle);%y coordinates of the points inscribed in my circle

x(1)=2;

y(1)=2;%center of the circle coordinates which is the base station in our case where the drone should launch from

v=[x,y]



%first case when we have one drone


   figure(1)

   plot( x, y, 'r*');

   axis equal

   X = v;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)%the 2opt algorithm

   figure(2)

   tspplot(p,X,1)

   opts = statset('Display','final');

   distance_to_finish_the_task1=d1*1000

   time_to_finish_the_task1=distance_to_finish_the_task1/velocity  

   distance_onedrone=d1*1000

   time1=distance_onedrone/velocity

 

   energy_consumption1=power*(distance_onedrone/velocity)

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   figure(3)

   plot( x, y,'r*',ly,lx, 'r-');

   axis equal

   x_center = 2;

   y_center = 2;% coordinates of the center of the circle


   b=v(:,2);% each drone is going through one part of the circle the upper part for y>2 and lower part y<2 that is why the y coordinates are being called

   

   X = v( b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(4)

   tspplot(p,X,1)


   X =  v( b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(5)

   tspplot(p,X,1)


   opts = statset('Display','final');

 

   

   

    distance2=[d1*1000 d2*1000];

   distance_to_finish_the_task2=max(distance2);

   time_to_finish_the_task2=distance_to_finish_the_task2/velocity;

   

   distance_twodrones=(d1+d2)*1000;

   time2=((d1*1000/velocity)+(d2*1000/velocity))/2;

   energy_consumption2=power*(distance_twodrones/velocity);

   


 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   


 

figure(6)


plot( x, y,'r*',xv3,yv3,'.-r',xv1,yv1,'.-r',xv2,yv2,'.-r',fx,fy, 'r-')

axis equal



a=v(:,1);

b=v(:,2);

in = inpolygon(a,b,xv1,yv1);


g= [a(in),b(in)]

   

   X=g;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(7)

   tspplot(p,X,1)



in = inpolygon(a,b,xv2,yv2);  

 l= [a(in),b(in)]

 

   X =  l;

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(8)

   tspplot(p,X,1)

 


  in = inpolygon(a,b,xv3,yv3);  

  m= [a(in),b(in)]

 


   

   X = m;

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(9)

   tspplot(p,X,1)

 

   opts = statset('Display','final');

   

   

 

   

   

   

   

 

   distance3=[d1*1000 d2*1000 d3*1000]

   distance_to_finish_the_task3=max(distance3)

   time_to_finish_the_task3=distance_to_finish_the_task3/velocity

   distance_threedrones=(d1+d2+d3)*1000

   time3=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity))/3

   energy_consumption3=power*(distance_threedrones/velocity)

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






   X = v(a<=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(10)

   tspplot(p,X,1)

 

   X =  v(a<=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(11)

   tspplot(p,X,1)

 


   

   X = v(a>=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(12)

   tspplot(p,X,1)

 



   

   X = v(a>=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d4] = tspsearch(X,s)

   figure(13)

   tspplot(p,X,1)

   

   opts = statset('Display','final');

   

   


   distance4=[d1*1000 d2*1000 d3*1000 d4*1000];

   distance_to_finish_the_task4=max(distance4);

   time_to_finish_the_task4= distance_to_finish_the_task4/velocity;

   

   

   

   distance_fourdrones=(d1+d2+d3+d4)*1000;

   time4=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity)+(d4*1000/velocity))/4;

   

   energy_consumption4=power*(distance_fourdrones/velocity);

   

   

   



number_of_drones = {'1drone';'2drones';'3drones';'4drones'}

distance = [distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];

time = [time1;time2;time3;time4];

energy_consumption = [energy_consumption1;energy_consumption2;energy_consumption3;energy_consumption4];



time_to_finish_the_task=[time_to_finish_the_task1;time_to_finish_the_task2;time_to_finish_the_task3;time_to_finish_the_task4];

distance_to_finish_the_task=[distance_to_finish_the_task1;distance_to_finish_the_task2;distance_to_finish_the_task3;distance_to_finish_the_task4];



xorigin=xlim %starting from zero

yorigin=ylim %starting from zero




drones_1dist=sqrt(((time1-xorigin(1))^2 )+((energy_consumption1-yorigin(1))^2))


drones_2dist=sqrt(((time2-xorigin(1))^2 )+((energy_consumption2-yorigin(1))^2))


drones_3dist=sqrt(((time3-xorigin(1))^2 )+((energy_consumption3-yorigin(1))^2))


drones_4dist=sqrt(((time4-xorigin(1))^2 )+((energy_consumption4-yorigin(1))^2))

trade_off=[drones_1dist;drones_2dist;drones_3dist;drones_4dist]


best_trade_off=min([drones_2dist,drones_3dist,drones_1dist,drones_4dist])


table = array2table(trade_off);

table.Properties.VariableNames = {'distance_fourdrones'}

bar(trade_off)

%%%%%

timee= 7 + (9-7).*rand(n,1)

hovering_time=sum(timee)


total_energy_consumption1=power*((distance_onedrone/velocity)+hovering_time);

total_energy_consumption2=power*((distance_twodrones/velocity)+hovering_time);

total_energy_consumption3=power*((distance_threedrones/velocity)+hovering_time);

total_energy_consumption4=power*((distance_fourdrones/velocity)+hovering_time);


total_energy_consumption=[total_energy_consumption1;total_energy_consumption2;total_energy_consumption3;total_energy_consumption4];

total_time=[time1+hovering_time;time2+hovering_time;time3+hovering_time;time4+hovering_time];

total_time_to_finish_the_task=[time_to_finish_the_task1+hovering_time;time_to_finish_the_task2+hovering_time;time_to_finish_the_task3+hovering_time;time_to_finish_the_task4+hovering_time];

D=[distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];


drone_one1=[time1;time_to_finish_the_task1];

drone_one2=[time2;time_to_finish_the_task2];

drone_one3=[time3;time_to_finish_the_task3];

drone_one4=[time4;time_to_finish_the_task4];

data = [drone_one1 drone_one2 drone_one3 drone_one4 ];

figure(14)

hb = bar(data)

set(hb(1), 'FaceColor','r')

set(hb(2), 'FaceColor','b')

set(hb(3), 'FaceColor','g')

set(hb(4), 'FaceColor','y')

ylabel('Time in sec');

set(gca,'XTickLabel',{'average time spent by the drones','time to complete the task'})

set(hb, {'DisplayName'}, {'one drone','two drones','three drones','four drones'}')

legend()

figure(15)


labels = {'one drone','two drones','three drones','four drones'};


plot(total_time_to_finish_the_task,distance_to_finish_the_task,'o',total_time_to_finish_the_task,distance_to_finish_the_task)

text(total_time_to_finish_the_task,distance_to_finish_the_task,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Distance Covered by the UAV with the Longest Route');

xlabel('Time to complete the task in sec');


figure(16)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time_to_finish_the_task,total_energy_consumption,'o',total_time_to_finish_the_task,total_energy_consumption)

text(total_time_to_finish_the_task,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules');

xlabel('Time to complete the Task by the UAVs in sec');



figure(17)

labels = {'one drone','two drones','three drones','four drones'};

plot(time,energy_consumption,'o',time,energy_consumption)

ylabel('Energy Consumption in Joules Excluding Houvering Energy');

xlabel('Time to Complete the Task by the Drones in sec Excluding houvering time');

text(time,energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')




figure(18)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time,total_energy_consumption,'o',total_time,total_energy_consumption)

text(total_time,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules ');

xlabel('Average Time Spent by the UAVs in sec');




figure(19)


[maxBar,maxIndex] = max(trade_off);

[minBar,minIndex] = min(trade_off);

figure(100)

bar(trade_off)


text(minIndex-0.5,minBar+5,'Best Trade Off')

set(gca,'XTickLabel',{'one drone','two drones','three drone','four drones'})

xtickangle(45)

xlabel('Number of Drones');

ylabel('Euclidean Distance From the Origin to Each Drone in Meters')

 

title('Best Trade off')

box off

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
算法 5G 数据安全/隐私保护
大规模MIMO通信系统信道估计matlab性能仿真,对比LS,OMP,MOMP以及CoSaMP
本文介绍了大规模MIMO系统中的信道估计方法,包括最小二乘法(LS)、正交匹配追踪(OMP)、多正交匹配追踪(MOMP)和压缩感知算法CoSaMP。展示了MATLAB 2022a仿真的结果,验证了不同算法在信道估计中的表现。最小二乘法适用于非稀疏信道,而OMP、MOMP和CoSaMP更适合稀疏信道。MATLAB核心程序实现了这些算法并进行了性能对比。以下是部分
246 84
|
1月前
|
固态存储
螺旋卫星通信天线设计与有限元分析matlab仿真
本课题研究了尺寸为10cm*10cm*30cm的卫星上搭载的螺旋型天线,工作于UHF频段(1-3GHz)。通过MATLAB2022a进行系统仿真,展示了天线的辐射特性。螺旋天线因其低轴比、宽带宽和紧凑结构而适用于卫星通信。采用有限元法分析天线的电磁性能,计算了天线的关键性能指标,包括S参数、增益、轴比等。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
1月前
|
自动驾驶 5G
5G技术中的时分双工(TDD)与频分双工(FDD)的应用区别
5G技术中的时分双工(TDD)与频分双工(FDD)的应用区别
377 63
|
10天前
|
物联网 5G 智能硬件
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
29 4
|
21天前
|
传感器 监控 自动驾驶
|
20天前
|
边缘计算 物联网 5G
5G小基站技术:解决室内覆盖难题
【10月更文挑战第25天】
47 5
|
17天前
|
人工智能 运维 数据挖掘
跨界融合:AI与5G技术如何共同推动数字化转型
【10月更文挑战第29天】本文探讨了人工智能(AI)与第五代移动通信技术(5G)的结合如何推动数字化转型。通过高速、低延迟的5G网络和AI的数据分析能力,两者相辅相成,实现了智能化网络运维、增强网络功能和多行业的实际应用。文中提供了网络流量预测和故障预测的示例代码,展示了技术的实际应用潜力。
35 1
|
20天前
|
运维 安全 5G

热门文章

最新文章