无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

简介: 无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Investigating the Unmanned Aerial Vehicle (UAV) assisted 5G communications in the form of flying base stations (FBSs). The techniques deployed include assessing, improving, and developing optimization methods to route drones that carry Flying Base Station (FBS) enhancing the terrestrial 5G network infrastructure. One way being effectively collecting and transmitting data through line of sight (LoS) communication to support flash crowds, machine type communication (IoTs), analysis of energy consumption, and total time to complete the tasks.

⛄ 部分代码

xv1 = [2 -2 4];

yv1 = [2 2 5.464];


xv2=[2 4 4];

yv2=[2 -1.4642 5.464];


xv3=[2 -2 4];

yv3=[2 2 -1.4642];


fx=[2,4]    

fy=[2,5.464]


%these coordinates represent traingle and the tangent in the three drone

%case


lx=[2,2];%lx and ly represent the two axis that cut the circle into 4 parts

ly=[0,4];


velocity=60 %velocity of the drone is 60m/s

power= 50   %power of the drone is 50W


 

d=zeros(5,1)



n=50; % number of points that you want

center = [2 ,2]; % center coordinates of the circle [x0,y0]

radius = 2; % radius of the circle

angle = 2*pi*rand(n,1);


rng(1)%fixes the points

r = radius*sqrt(rand(n,1));


 

x = center(1)+r.*cos(angle) ;%x coordinates of the points inscribed in my circle

y = center(2)+r.*sin(angle);%y coordinates of the points inscribed in my circle

x(1)=2;

y(1)=2;%center of the circle coordinates which is the base station in our case where the drone should launch from

v=[x,y]



%first case when we have one drone


   figure(1)

   plot( x, y, 'r*');

   axis equal

   X = v;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)%the 2opt algorithm

   figure(2)

   tspplot(p,X,1)

   opts = statset('Display','final');

   distance_to_finish_the_task1=d1*1000

   time_to_finish_the_task1=distance_to_finish_the_task1/velocity  

   distance_onedrone=d1*1000

   time1=distance_onedrone/velocity

 

   energy_consumption1=power*(distance_onedrone/velocity)

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   figure(3)

   plot( x, y,'r*',ly,lx, 'r-');

   axis equal

   x_center = 2;

   y_center = 2;% coordinates of the center of the circle


   b=v(:,2);% each drone is going through one part of the circle the upper part for y>2 and lower part y<2 that is why the y coordinates are being called

   

   X = v( b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(4)

   tspplot(p,X,1)


   X =  v( b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(5)

   tspplot(p,X,1)


   opts = statset('Display','final');

 

   

   

    distance2=[d1*1000 d2*1000];

   distance_to_finish_the_task2=max(distance2);

   time_to_finish_the_task2=distance_to_finish_the_task2/velocity;

   

   distance_twodrones=(d1+d2)*1000;

   time2=((d1*1000/velocity)+(d2*1000/velocity))/2;

   energy_consumption2=power*(distance_twodrones/velocity);

   


 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   


 

figure(6)


plot( x, y,'r*',xv3,yv3,'.-r',xv1,yv1,'.-r',xv2,yv2,'.-r',fx,fy, 'r-')

axis equal



a=v(:,1);

b=v(:,2);

in = inpolygon(a,b,xv1,yv1);


g= [a(in),b(in)]

   

   X=g;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(7)

   tspplot(p,X,1)



in = inpolygon(a,b,xv2,yv2);  

 l= [a(in),b(in)]

 

   X =  l;

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(8)

   tspplot(p,X,1)

 


  in = inpolygon(a,b,xv3,yv3);  

  m= [a(in),b(in)]

 


   

   X = m;

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(9)

   tspplot(p,X,1)

 

   opts = statset('Display','final');

   

   

 

   

   

   

   

 

   distance3=[d1*1000 d2*1000 d3*1000]

   distance_to_finish_the_task3=max(distance3)

   time_to_finish_the_task3=distance_to_finish_the_task3/velocity

   distance_threedrones=(d1+d2+d3)*1000

   time3=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity))/3

   energy_consumption3=power*(distance_threedrones/velocity)

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






   X = v(a<=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(10)

   tspplot(p,X,1)

 

   X =  v(a<=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(11)

   tspplot(p,X,1)

 


   

   X = v(a>=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(12)

   tspplot(p,X,1)

 



   

   X = v(a>=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d4] = tspsearch(X,s)

   figure(13)

   tspplot(p,X,1)

   

   opts = statset('Display','final');

   

   


   distance4=[d1*1000 d2*1000 d3*1000 d4*1000];

   distance_to_finish_the_task4=max(distance4);

   time_to_finish_the_task4= distance_to_finish_the_task4/velocity;

   

   

   

   distance_fourdrones=(d1+d2+d3+d4)*1000;

   time4=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity)+(d4*1000/velocity))/4;

   

   energy_consumption4=power*(distance_fourdrones/velocity);

   

   

   



number_of_drones = {'1drone';'2drones';'3drones';'4drones'}

distance = [distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];

time = [time1;time2;time3;time4];

energy_consumption = [energy_consumption1;energy_consumption2;energy_consumption3;energy_consumption4];



time_to_finish_the_task=[time_to_finish_the_task1;time_to_finish_the_task2;time_to_finish_the_task3;time_to_finish_the_task4];

distance_to_finish_the_task=[distance_to_finish_the_task1;distance_to_finish_the_task2;distance_to_finish_the_task3;distance_to_finish_the_task4];



xorigin=xlim %starting from zero

yorigin=ylim %starting from zero




drones_1dist=sqrt(((time1-xorigin(1))^2 )+((energy_consumption1-yorigin(1))^2))


drones_2dist=sqrt(((time2-xorigin(1))^2 )+((energy_consumption2-yorigin(1))^2))


drones_3dist=sqrt(((time3-xorigin(1))^2 )+((energy_consumption3-yorigin(1))^2))


drones_4dist=sqrt(((time4-xorigin(1))^2 )+((energy_consumption4-yorigin(1))^2))

trade_off=[drones_1dist;drones_2dist;drones_3dist;drones_4dist]


best_trade_off=min([drones_2dist,drones_3dist,drones_1dist,drones_4dist])


table = array2table(trade_off);

table.Properties.VariableNames = {'distance_fourdrones'}

bar(trade_off)

%%%%%

timee= 7 + (9-7).*rand(n,1)

hovering_time=sum(timee)


total_energy_consumption1=power*((distance_onedrone/velocity)+hovering_time);

total_energy_consumption2=power*((distance_twodrones/velocity)+hovering_time);

total_energy_consumption3=power*((distance_threedrones/velocity)+hovering_time);

total_energy_consumption4=power*((distance_fourdrones/velocity)+hovering_time);


total_energy_consumption=[total_energy_consumption1;total_energy_consumption2;total_energy_consumption3;total_energy_consumption4];

total_time=[time1+hovering_time;time2+hovering_time;time3+hovering_time;time4+hovering_time];

total_time_to_finish_the_task=[time_to_finish_the_task1+hovering_time;time_to_finish_the_task2+hovering_time;time_to_finish_the_task3+hovering_time;time_to_finish_the_task4+hovering_time];

D=[distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];


drone_one1=[time1;time_to_finish_the_task1];

drone_one2=[time2;time_to_finish_the_task2];

drone_one3=[time3;time_to_finish_the_task3];

drone_one4=[time4;time_to_finish_the_task4];

data = [drone_one1 drone_one2 drone_one3 drone_one4 ];

figure(14)

hb = bar(data)

set(hb(1), 'FaceColor','r')

set(hb(2), 'FaceColor','b')

set(hb(3), 'FaceColor','g')

set(hb(4), 'FaceColor','y')

ylabel('Time in sec');

set(gca,'XTickLabel',{'average time spent by the drones','time to complete the task'})

set(hb, {'DisplayName'}, {'one drone','two drones','three drones','four drones'}')

legend()

figure(15)


labels = {'one drone','two drones','three drones','four drones'};


plot(total_time_to_finish_the_task,distance_to_finish_the_task,'o',total_time_to_finish_the_task,distance_to_finish_the_task)

text(total_time_to_finish_the_task,distance_to_finish_the_task,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Distance Covered by the UAV with the Longest Route');

xlabel('Time to complete the task in sec');


figure(16)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time_to_finish_the_task,total_energy_consumption,'o',total_time_to_finish_the_task,total_energy_consumption)

text(total_time_to_finish_the_task,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules');

xlabel('Time to complete the Task by the UAVs in sec');



figure(17)

labels = {'one drone','two drones','three drones','four drones'};

plot(time,energy_consumption,'o',time,energy_consumption)

ylabel('Energy Consumption in Joules Excluding Houvering Energy');

xlabel('Time to Complete the Task by the Drones in sec Excluding houvering time');

text(time,energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')




figure(18)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time,total_energy_consumption,'o',total_time,total_energy_consumption)

text(total_time,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules ');

xlabel('Average Time Spent by the UAVs in sec');




figure(19)


[maxBar,maxIndex] = max(trade_off);

[minBar,minIndex] = min(trade_off);

figure(100)

bar(trade_off)


text(minIndex-0.5,minBar+5,'Best Trade Off')

set(gca,'XTickLabel',{'one drone','two drones','three drone','four drones'})

xtickangle(45)

xlabel('Number of Drones');

ylabel('Euclidean Distance From the Origin to Each Drone in Meters')

 

title('Best Trade off')

box off

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3天前
|
安全 自动驾驶 5G
5G vs 4G:通信技术的下一个革命
【4月更文挑战第21天】
6 0
5G vs 4G:通信技术的下一个革命
|
22天前
|
存储 人工智能 机器人
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
|
2月前
|
机器学习/深度学习 算法 计算机视觉
霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)
霍夫变换车道线识别-车牌字符识别代码(matlab仿真与图像处理系列第5期)
30 2
|
2月前
|
算法
MATLAB | 插值算法 | 一维interpl插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 一维interpl插值法 | 附数据和出图代码 | 直接上手
40 0
|
3月前
|
安全 物联网 5G
5g技术的优缺点是什么
5g技术的优缺点是什么
80 0
|
3月前
|
5G 调度 vr&ar
5g技术的应用
5g技术的应用
26 0
|
3月前
|
人工智能 自动驾驶 物联网
5G技术会带来什么新的技术革新
5G技术会带来什么新的技术革新
|
3天前
|
物联网 5G SDN
|
1月前
|
5G 定位技术
带你读《5G大规模天线增强技术》精品文章合集
带你读《5G大规模天线增强技术》精品文章合集
|
2月前
|
人工智能 边缘计算 Cloud Native
AMD 扩展电信合作伙伴生态系统,亮相 MWC 2024 展示 5G 与 6G、vRAN、Open RAN 领域先进技术
对于通信服务提供商( CSP )而言,5G 无线接入网( RAN )领域向开放和虚拟化网络的发展势头持续强劲。其中大有裨益,包括能够轻松构建、定制和管理网络,从而满足不同需求。与传统 RAN 相比,基于 vRAN 和 OpenRAN 的系统还提供了通向云原生技术的途径以及供应商灵活性。 因此,包括 AMD 在内的越来越多的行业领先企业正在提供支持当今 5G 开放和虚拟专网的解决方案也就不足为奇了。