大数据技术之Hive SQL题库-中级1

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据技术之Hive SQL题库-中级

第1章 环境准备

1.1 用户信息表

1)表结构

user_id(用户id)

gender(性别)

birthday(生日)

101

1990-01-01

102

1991-02-01

103

1992-03-01

104

1993-04-01


2)建表语句

hive>

DROP TABLE IF EXISTS user_info;
CREATE table user_info(
    user_id string comment'用户id',
    gender string comment'性别',
    birthday string comment'生日'
)comment'用户信息表'
row format delimited fields terminated by '\t';


3)数据装载

hive>

insert overwrite table user_info
values ('101', '男', '1990-01-01'),
       ('102', '女', '1991-02-01'),
       ('103', '女', '1992-03-01'),
       ('104', '男', '1993-04-01'),
       ('105', '女', '1994-05-01'),
       ('106', '男', '1995-06-01'),
       ('107', '女', '1996-07-01'),
       ('108', '男', '1997-08-01'),
       ('109', '女', '1998-09-01'),
       ('1010', '男', '1999-10-01');

1.2 商品信息表

1)表结构

sku_id

(商品id)

name

(商品名称)

category_id

(分类id)

from_date

(上架日期)

price

(商品价格)

1

xiaomi 10

1

2020-01-01

2000

6

洗碗机

2

2020-02-01

2000

9

自行车

3

2020-01-01

1000


2)建表语句

hive>

DROP TABLE IF EXISTS sku_info;
CREATE TABLE sku_info(
    `sku_id`      string COMMENT '商品id',
    `name`        string COMMENT '商品名称',
    `category_id` string COMMENT '所属分类id',
    `from_date`   string COMMENT '上架日期',
    `price`       double COMMENT '商品单价'
) COMMENT '商品属性表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

insert overwrite table sku_info
values ('1', 'xiaomi 10', '1', '2020-01-01', 2000),
       ('2', '手机壳', '1', '2020-02-01', 10),
       ('3', 'apple 12', '1', '2020-03-01', 5000),
       ('4', 'xiaomi 13', '1', '2020-04-01', 6000),
       ('5', '破壁机', '2', '2020-01-01', 500),
       ('6', '洗碗机', '2', '2020-02-01', 2000),
       ('7', '热水壶', '2', '2020-03-01', 100),
       ('8', '微波炉', '2', '2020-04-01', 600),
       ('9', '自行车', '3', '2020-01-01', 1000),
       ('10', '帐篷', '3', '2020-02-01', 100),
       ('11', '烧烤架', '3', '2020-02-01', 50),
       ('12', '遮阳伞', '3', '2020-03-01', 20);


1.3 商品分类信息表

1)表结构

category_id(分类id)

category_name(分类名称)

1

数码

2

厨卫

3

户外


2)建表语句

hive>

DROP TABLE IF EXISTS category_info;
create table category_info(
    `category_id`   string comment'分类id',
    `category_name` string comment'分类名称',
) COMMENT '品类表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

insert overwrite table category_info
values ('1','数码'),
       ('2','厨卫'),
       ('3','户外');


1.4 订单信息表

1)表结构

order_id

(订单id)

user_id

(用户id)

create_date

(下单日期)

total_amount

(订单金额)

1

101

2021-09-30

29000.00

10

103

2020-10-02

28000.00


2)建表语句

hive>

DROP TABLE IF EXISTS order_info;
create table order_info(
    `order_id`     string COMMENT '订单id',
    `user_id`      string COMMENT '用户id',
    `create_date`  string COMMENT '下单日期',
    `total_amount` decimal(16, 2) COMMENT '订单总金额'
) COMMENT '订单表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

insert overwrite table order_info
values ('1', '101', '2021-09-27', 29000.00),
       ('2', '101', '2021-09-28', 70500.00),
       ('3', '101', '2021-09-29', 43300.00),
       ('4', '101', '2021-09-30', 860.00),
       ('5', '102', '2021-10-01', 46180.00),
       ('6', '102', '2021-10-01', 50000.00),
       ('7', '102', '2021-10-01', 75500.00),
       ('8', '102', '2021-10-02', 6170.00),
       ('9', '103', '2021-10-02', 18580.00),
       ('10', '103', '2021-10-02', 28000.00),
       ('11', '103', '2021-10-02', 23400.00),
       ('12', '103', '2021-10-03', 5910.00),
       ('13', '104', '2021-10-03', 13000.00),
       ('14', '104', '2021-10-03', 69500.00),
       ('15', '104', '2021-10-03', 2000.00),
       ('16', '104', '2021-10-03', 5380.00),
       ('17', '105', '2021-10-04', 6210.00),
       ('18', '105', '2021-10-04', 68000.00),
       ('19', '105', '2021-10-04', 43100.00),
       ('20', '105', '2021-10-04', 2790.00),
       ('21', '106', '2021-10-04', 9390.00),
       ('22', '106', '2021-10-05', 58000.00),
       ('23', '106', '2021-10-05', 46600.00),
       ('24', '106', '2021-10-05', 5160.00),
       ('25', '107', '2021-10-05', 55350.00),
       ('26', '107', '2021-10-05', 14500.00),
       ('27', '107', '2021-10-06', 47400.00),
       ('28', '107', '2021-10-06', 6900.00),
       ('29', '108', '2021-10-06', 56570.00),
       ('30', '108', '2021-10-06', 44500.00),
       ('31', '108', '2021-10-07', 50800.00),
       ('32', '108', '2021-10-07', 3900.00),
       ('33', '109', '2021-10-07', 41480.00),
       ('34', '109', '2021-10-07', 88000.00),
       ('35', '109', '2020-10-08', 15000.00),
       ('36', '109', '2020-10-08', 9020.00),
       ('37', '1010', '2020-10-08', 9260.00),
       ('38', '1010', '2020-10-08', 12000.00),
       ('39', '1010', '2020-10-08', 23900.00),
       ('40', '1010', '2020-10-08', 6790.00);


1.5 订单明细表

1)表结构

1686552777702.png

2)建表语句

hive>

DROP TABLE IF EXISTS order_detail;
CREATE TABLE order_detail
(
    `order_detail_id` string COMMENT '订单明细id',
    `order_id`        string COMMENT '订单id',
    `sku_id`          string COMMENT '商品id',
    `create_date`     string COMMENT '下单日期',
    `price`           decimal(16, 2) COMMENT '下单时的商品单价',
    `sku_num`         int COMMENT '下单商品件数'
) COMMENT '订单明细表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

INSERT overwrite table order_detail
values ('1', '1', '1', '2021-09-27', 2000.00, 2),
       ('2', '1', '3', '2021-09-27', 5000.00, 5),
       ('3', '2', '4', '2021-09-28', 6000.00, 9),
       ('4', '2', '5', '2021-09-28', 500.00, 33),
       ('5', '3', '7', '2021-09-29', 100.00, 37),
       ('6', '3', '8', '2021-09-29', 600.00, 46),
       ('7', '3', '9', '2021-09-29', 1000.00, 12),
       ('8', '4', '12', '2021-09-30', 20.00, 43),
       ('9', '5', '1', '2021-10-01', 2000.00, 8),
       ('10', '5', '2', '2021-10-01', 10.00, 18),
       ('11', '5', '3', '2021-10-01', 5000.00, 6),
       ('12', '6', '4', '2021-10-01', 6000.00, 8),
       ('13', '6', '6', '2021-10-01', 2000.00, 1),
       ('14', '7', '7', '2021-10-01', 100.00, 17),
       ('15', '7', '8', '2021-10-01', 600.00, 48),
       ('16', '7', '9', '2021-10-01', 1000.00, 45),
       ('17', '8', '10', '2021-10-02', 100.00, 48),
       ('18', '8', '11', '2021-10-02', 50.00, 15),
       ('19', '8', '12', '2021-10-02', 20.00, 31),
       ('20', '9', '1', '2021-09-30', 2000.00, 9),
       ('21', '9', '2', '2021-10-02', 10.00, 5800),
       ('22', '10', '4', '2021-10-02', 6000.00, 1),
       ('23', '10', '5', '2021-10-02', 500.00, 24),
       ('24', '10', '6', '2021-10-02', 2000.00, 5),
       ('25', '11', '8', '2021-10-02', 600.00, 39),
       ('26', '12', '10', '2021-10-03', 100.00, 47),
       ('27', '12', '11', '2021-10-03', 50.00, 19),
       ('28', '12', '12', '2021-10-03', 20.00, 13000),
       ('29', '13', '1', '2021-10-03', 2000.00, 4),
       ('30', '13', '3', '2021-10-03', 5000.00, 1),
       ('31', '14', '4', '2021-10-03', 6000.00, 5),
       ('32', '14', '5', '2021-10-03', 500.00, 47),
       ('33', '14', '6', '2021-10-03', 2000.00, 8),
       ('34', '15', '7', '2021-10-03', 100.00, 20),
       ('35', '16', '10', '2021-10-03', 100.00, 22),
       ('36', '16', '11', '2021-10-03', 50.00, 42),
       ('37', '16', '12', '2021-10-03', 20.00, 7400),
       ('38', '17', '1', '2021-10-04', 2000.00, 3),
       ('39', '17', '2', '2021-10-04', 10.00, 21),
       ('40', '18', '4', '2021-10-04', 6000.00, 8),
       ('41', '18', '5', '2021-10-04', 500.00, 28),
       ('42', '18', '6', '2021-10-04', 2000.00, 3),
       ('43', '19', '7', '2021-10-04', 100.00, 55),
       ('44', '19', '8', '2021-10-04', 600.00, 11),
       ('45', '19', '9', '2021-10-04', 1000.00, 31),
       ('46', '20', '11', '2021-10-04', 50.00, 45),
       ('47', '20', '12', '2021-10-04', 20.00, 27),
       ('48', '21', '1', '2021-10-04', 2000.00, 2),
       ('49', '21', '2', '2021-10-04', 10.00, 39),
       ('50', '21', '3', '2021-10-04', 5000.00, 1),
       ('51', '22', '4', '2021-10-05', 6000.00, 8),
       ('52', '22', '5', '2021-10-05', 500.00, 20),
       ('53', '23', '7', '2021-10-05', 100.00, 58),
       ('54', '23', '8', '2021-10-05', 600.00, 18),
       ('55', '23', '9', '2021-10-05', 1000.00, 30),
       ('56', '24', '10', '2021-10-05', 100.00, 27),
       ('57', '24', '11', '2021-10-05', 50.00, 28),
       ('58', '24', '12', '2021-10-05', 20.00, 53),
       ('59', '25', '1', '2021-10-05', 2000.00, 5),
       ('60', '25', '2', '2021-10-05', 10.00, 35),
       ('61', '25', '3', '2021-10-05', 5000.00, 9),
       ('62', '26', '4', '2021-10-05', 6000.00, 1),
       ('63', '26', '5', '2021-10-05', 500.00, 13),
       ('64', '26', '6', '2021-10-05', 2000.00, 1),
       ('65', '27', '7', '2021-10-06', 100.00, 30),
       ('66', '27', '8', '2021-10-06', 600.00, 19),
       ('67', '27', '9', '2021-10-06', 1000.00, 33),
       ('68', '28', '10', '2021-10-06', 100.00, 37),
       ('69', '28', '11', '2021-10-06', 50.00, 46),
       ('70', '28', '12', '2021-10-06', 20.00, 45),
       ('71', '29', '1', '2021-10-06', 2000.00, 8),
       ('72', '29', '2', '2021-10-06', 10.00, 57),
       ('73', '29', '3', '2021-10-06', 5000.00, 8),
       ('74', '30', '4', '2021-10-06', 6000.00, 3),
       ('75', '30', '5', '2021-10-06', 500.00, 33),
       ('76', '30', '6', '2021-10-06', 2000.00, 5),
       ('77', '31', '8', '2021-10-07', 600.00, 13),
       ('78', '31', '9', '2021-10-07', 1000.00, 43),
       ('79', '32', '10', '2021-10-07', 100.00, 24),
       ('80', '32', '11', '2021-10-07', 50.00, 30),
       ('81', '33', '1', '2021-10-07', 2000.00, 8),
       ('82', '33', '2', '2021-10-07', 10.00, 48),
       ('83', '33', '3', '2021-10-07', 5000.00, 5),
       ('84', '34', '4', '2021-10-07', 6000.00, 10),
       ('85', '34', '5', '2021-10-07', 500.00, 44),
       ('86', '34', '6', '2021-10-07', 2000.00, 3),
       ('87', '35', '8', '2020-10-08', 600.00, 25),
       ('88', '36', '10', '2020-10-08', 100.00, 57),
       ('89', '36', '11', '2020-10-08', 50.00, 44),
       ('90', '36', '12', '2020-10-08', 20.00, 56),
       ('91', '37', '1', '2020-10-08', 2000.00, 2),
       ('92', '37', '2', '2020-10-08', 10.00, 26),
       ('93', '37', '3', '2020-10-08', 5000.00, 1),
       ('94', '38', '6', '2020-10-08', 2000.00, 6),
       ('95', '39', '7', '2020-10-08', 100.00, 35),
       ('96', '39', '8', '2020-10-08', 600.00, 34),
       ('97', '40', '10', '2020-10-08', 100.00, 37),
       ('98', '40', '11', '2020-10-08', 50.00, 51),
       ('99', '40', '12', '2020-10-08', 20.00, 27);

1.6 登录明细表

1)表结构

1686552807084.png

2)建表语句

hive>

DROP TABLE IF EXISTS user_login_detail;
CREATE TABLE user_login_detail
(
    `user_id`    string comment '用户id',
    `ip_address` string comment 'ip地址',
    `login_ts`   string comment '登录时间',
    `logout_ts`  string comment '登出时间'
) COMMENT '用户登录明细表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

INSERT overwrite table user_login_detail
VALUES ('101', '180.149.130.161', '2021-09-21 08:00:00', '2021-09-27 08:30:00'),
       ('101', '180.149.130.161', '2021-09-27 08:00:00', '2021-09-27 08:30:00'),
       ('101', '180.149.130.161', '2021-09-28 09:00:00', '2021-09-28 09:10:00'),
       ('101', '180.149.130.161', '2021-09-29 13:30:00', '2021-09-29 13:50:00'),
       ('101', '180.149.130.161', '2021-09-30 20:00:00', '2021-09-30 20:10:00'),
       ('102', '120.245.11.2', '2021-09-22 09:00:00', '2021-09-27 09:30:00'),
       ('102', '120.245.11.2', '2021-10-01 08:00:00', '2021-10-01 08:30:00'),
       ('102', '180.149.130.174', '2021-10-01 07:50:00', '2021-10-01 08:20:00'),
       ('102', '120.245.11.2', '2021-10-02 08:00:00', '2021-10-02 08:30:00'),
       ('103', '27.184.97.3', '2021-09-23 10:00:00', '2021-09-27 10:30:00'),
       ('103', '27.184.97.3', '2021-10-03 07:50:00', '2021-10-03 09:20:00'),
       ('104', '27.184.97.34', '2021-09-24 11:00:00', '2021-09-27 11:30:00'),
       ('104', '27.184.97.34', '2021-10-03 07:50:00', '2021-10-03 08:20:00'),
       ('104', '27.184.97.34', '2021-10-03 08:50:00', '2021-10-03 10:20:00'),
       ('104', '120.245.11.89', '2021-10-03 08:40:00', '2021-10-03 10:30:00'),
       ('105', '119.180.192.212', '2021-10-04 09:10:00', '2021-10-04 09:30:00'),
       ('106', '119.180.192.66', '2021-10-04 08:40:00', '2021-10-04 10:30:00'),
       ('106', '119.180.192.66', '2021-10-05 21:50:00', '2021-10-05 22:40:00'),
       ('107', '219.134.104.7', '2021-09-25 12:00:00', '2021-09-27 12:30:00'),
       ('107', '219.134.104.7', '2021-10-05 22:00:00', '2021-10-05 23:00:00'),
       ('107', '219.134.104.7', '2021-10-06 09:10:00', '2021-10-06 10:20:00'),
       ('107', '27.184.97.46', '2021-10-06 09:00:00', '2021-10-06 10:00:00'),
       ('108', '101.227.131.22', '2021-10-06 09:00:00', '2021-10-06 10:00:00'),
       ('108', '101.227.131.22', '2021-10-06 22:00:00', '2021-10-06 23:00:00'),
       ('109', '101.227.131.29', '2021-09-26 13:00:00', '2021-09-27 13:30:00'),
       ('109', '101.227.131.29', '2021-10-06 08:50:00', '2021-10-06 10:20:00'),
       ('109', '101.227.131.29', '2021-10-08 09:00:00', '2021-10-08 09:10:00'),
       ('1010', '119.180.192.10', '2021-09-27 14:00:00', '2021-09-27 14:30:00'),
       ('1010', '119.180.192.10', '2021-10-09 08:50:00', '2021-10-09 10:20:00');


1.7 商品价格变更明细表

1)表结构

1686552833329.png

2)建表语句

hive>

DROP TABLE IF EXISTS sku_price_modify_detail;
CREATE TABLE sku_price_modify_detail
(
    `sku_id`      string comment '商品id',
    `new_price`   decimal(16, 2) comment '更改后的价格',
    `change_date` string comment '变动日期'
) COMMENT '商品价格变更明细表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

insert overwrite table sku_price_modify_detail
values ('1', 1900, '2021-09-25'),
       ('1', 2000, '2021-09-26'),
       ('2', 80, '2021-09-29'),
       ('2', 10, '2021-09-30'),
       ('3', 4999, '2021-09-25'),
       ('3', 5000, '2021-09-26'),
       ('4', 5600, '2021-09-26'),
       ('4', 6000, '2021-09-27'),
       ('5', 490, '2021-09-27'),
       ('5', 500, '2021-09-28'),
       ('6', 1988, '2021-09-30'),
       ('6', 2000, '2021-10-01'),
       ('7', 88, '2021-09-28'),
       ('7', 100, '2021-09-29'),
       ('8', 800, '2021-09-28'),
       ('8', 600, '2021-09-29'),
       ('9', 1100, '2021-09-27'),
       ('9', 1000, '2021-09-28'),
       ('10', 90, '2021-10-01'),
       ('10', 100, '2021-10-02'),
       ('11', 66, '2021-10-01'),
       ('11', 50, '2021-10-02'),
       ('12', 35, '2021-09-28'),
       ('12', 20, '2021-09-29');


1.8 配送信息表

1)表结构

1686552861411.png

2)建表语句

hive>

DROP TABLE IF EXISTS delivery_info;
CREATE TABLE delivery_info
(
    `delivery_id` string comment '配送单id',
    `order_id`    string comment '订单id',
    `user_id`     string comment '用户id',
    `order_date`  string comment '下单日期',
    `custom_date` string comment '期望配送日期'
) COMMENT '邮寄信息表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';


3)数据装载

hive>

insert overwrite table delivery_info
values ('1', '1', '101', '2021-09-27', '2021-09-29'),
       ('2', '2', '101', '2021-09-28', '2021-09-28'),
       ('3', '3', '101', '2021-09-29', '2021-09-30'),
       ('4', '4', '101', '2021-09-30', '2021-10-01'),
       ('5', '5', '102', '2021-10-01', '2021-10-01'),
       ('6', '6', '102', '2021-10-01', '2021-10-01'),
       ('7', '7', '102', '2021-10-01', '2021-10-03'),
       ('8', '8', '102', '2021-10-02', '2021-10-02'),
       ('9', '9', '103', '2021-10-02', '2021-10-03'),
       ('10', '10', '103', '2021-10-02', '2021-10-04'),
       ('11', '11', '103', '2021-10-02', '2021-10-02'),
       ('12', '12', '103', '2021-10-03', '2021-10-03'),
       ('13', '13', '104', '2021-10-03', '2021-10-04'),
       ('14', '14', '104', '2021-10-03', '2021-10-04'),
       ('15', '15', '104', '2021-10-03', '2021-10-03'),
       ('16', '16', '104', '2021-10-03', '2021-10-03'),
       ('17', '17', '105', '2021-10-04', '2021-10-04'),
       ('18', '18', '105', '2021-10-04', '2021-10-06'),
       ('19', '19', '105', '2021-10-04', '2021-10-06'),
       ('20', '20', '105', '2021-10-04', '2021-10-04'),
       ('21', '21', '106', '2021-10-04', '2021-10-04'),
       ('22', '22', '106', '2021-10-05', '2021-10-05'),
       ('23', '23', '106', '2021-10-05', '2021-10-05'),
       ('24', '24', '106', '2021-10-05', '2021-10-07'),
       ('25', '25', '107', '2021-10-05', '2021-10-05'),
       ('26', '26', '107', '2021-10-05', '2021-10-06'),
       ('27', '27', '107', '2021-10-06', '2021-10-06'),
       ('28', '28', '107', '2021-10-06', '2021-10-07'),
       ('29', '29', '108', '2021-10-06', '2021-10-06'),
       ('30', '30', '108', '2021-10-06', '2021-10-06'),
       ('31', '31', '108', '2021-10-07', '2021-10-09'),
       ('32', '32', '108', '2021-10-07', '2021-10-09'),
       ('33', '33', '109', '2021-10-07', '2021-10-08'),
       ('34', '34', '109', '2021-10-07', '2021-10-08'),
       ('35', '35', '109', '2021-10-08', '2021-10-10'),
       ('36', '36', '109', '2021-10-08', '2021-10-09'),
       ('37', '37', '1010', '2021-10-08', '2021-10-10'),
       ('38', '38', '1010', '2021-10-08', '2021-10-10'),
       ('39', '39', '1010', '2021-10-08', '2021-10-09'),
       ('40', '40', '1010', '2021-10-08', '2021-10-09');



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
20天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
2月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
85 0
|
2月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
62 0
|
2月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
47 0
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
48 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
83 0
|
2月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
41 0
|
7月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
196 1
|
7月前
|
SQL 分布式计算 数据库
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
277 0
|
5月前
|
SQL 分布式计算 大数据
大数据处理平台Hive详解
【7月更文挑战第15天】Hive作为基于Hadoop的数据仓库工具,在大数据处理和分析领域发挥着重要作用。通过提供类SQL的查询语言,Hive降低了数据处理的门槛,使得具有SQL背景的开发者可以轻松地处理大规模数据。然而,Hive也存在查询延迟高、表达能力有限等缺点,需要在实际应用中根据具体场景和需求进行选择和优化。