大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)

接上篇:https://developer.aliyun.com/article/1623013?spm=a2c6h.13148508.setting.18.49764f0eTIOJrt

查询数据

SELECT * FROM partition_v1;
• 1

执行结果如下所示:

查看分区

SELECT table, partition, path FROM system.parts WHERE table = 'partition_v1';
• 1

执行结果如下图所示:

视图表

普通视图:不保存数据,只是一层单纯的SELECT查询映射,起着简化查询的作用

物化视图:保存数据,源表被写入数据,物化视图也会同步更新

POPULATE修饰符:决定在创建物化视图的过程中是否将源表的数据同步到物化视图。

表基本操作

只有 MergeTree、Merge、Distribution这三类表引擎支持ALTER操作!!!


追加字段

ALTER TABLE partition_v1 ADD COLUMN os String default 'mac';
ALTER TABLE partition_v1 ADD COLUMN ip String after id;
DESC partition_v1;

执行结果如下:

修改类型

注意:类型需要互相兼容

ALTER TABLE partition_v1 modify column ip IPv4;
DESC partition_v1;

执行结果如下图所示:

修改备注

ALTER TABLE partition_v1 COMMENT COLUMN id '主键ID';
DESC partition_v1;
• 1
• 2

执行结果如下图所示:

删除字段

ALTER TABLE partition_v1 DROP COLUMN url;
DESC partition_v1;
• 1
• 2

注意,删除字段会把该字段下的数据一起删除:

移动表

rename TABLE default.partition_v1 to mydatabase.partition_v1;
USE mydatabase;
SHOW TABLES;

执行结果如下图所示:

分区操作

查看分区

SELECT partition_id, name, table, database FROM system.parts where table = 'partition_v1';
• 1

执行结果如下所示:

删除分区

ALTER TABLE partition_v1 DROP PARTITION 202401;
SELECT partition_id, name, table, database FROM system.parts where table = 'partition

执行结果如下图所示:

复制分区

ALTER TABLE partition_v2 replace partition 202402 FROM partition_v1;

重置分区

ALTER TABLE partition_v1 CLEAR COLUMN ip in partition  202402;
  • 将 ip 列的值清空(设置为默认值)。
  • 清空操作不会删除记录,而是将指定列的值设置为默认值(如 0 或 NULL,具体取决于列的默认设置)。

执行结果如下图所示:

卸载分区

ALTER TABLE partition_v1 DETACH partition 202402;
SELECT partition_id, name, table, database FROM system.parts where table = 'partitio

执行结果如下图所示:

转载分区

ALTER TABLE partition_v1 ATTACH partition 202402;
SELECT partition_id, name, table, database FROM system.parts where table = 'partitio

执行结果如下图所示:

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
103
分享
相关文章
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
97 35
vivo基于Paimon的湖仓一体落地实践
本文整理自vivo互联网大数据专家徐昱在Flink Forward Asia 2024的分享,基于实际案例探讨了构建现代化数据湖仓的关键决策和技术实践。内容涵盖组件选型、架构设计、离线加速、流批链路统一、消息组件替代、样本拼接、查询提速、元数据监控、数据迁移及未来展望等方面。通过这些探索,展示了如何优化性能、降低成本并提升数据处理效率,为相关领域提供了宝贵的经验和参考。
428 3
vivo基于Paimon的湖仓一体落地实践
StarRocks 在爱奇艺大数据场景的实践
本文介绍了爱奇艺大数据OLAP服务负责人林豪在StarRocks年度峰会上的分享,重点讲述了爱奇艺OLAP引擎的演进及引入StarRocks后的显著效果。在广告业务中,StarRocks替换Impala+Kudu后,接口性能提升400%,P90查询延迟缩短4.6倍;在“魔镜”数据分析平台中,StarRocks替代Spark达67%,P50查询速度提升33倍,P90提升15倍,节省4.6个人天。未来,爱奇艺计划进一步优化存算一体和存算分离架构,提升整体数据处理效率。
StarRocks 在爱奇艺大数据场景的实践
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
197 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目