m基于HMM隐性马尔科夫模型的驾驶员驾驶意图识别算法matlab仿真

简介: m基于HMM隐性马尔科夫模型的驾驶员驾驶意图识别算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

89cd263cc32380e3dc78f6e00e3944df_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3faf3add154e6e0be2e8ce44e762e25d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b9583c78a5f244002a8ca6c91408702f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a4f44cbdef71bc562c4e72ec12b09947_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
faa1cbc1a614850b8e51edaca1781b90_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
随着智能交通系统的发展,驾驶员驾驶意图的识别越来越受到人们的关注。准确识别驾驶员的驾驶意图对于提高道路安全和实现自动驾驶技术具有重要意义。提出了一种基于隐马尔科夫模型(HMM)的驾驶员驾驶意图识别方法,通过对驾驶员的行为数据进行建模和分析,实现对驾驶员驾驶意图的实时识别。HMM是一种统计模型,可以用于处理具有时序结构的数据。在许多领域,如语音识别、手写识别等,HMM已经取得了显著的研究成果。本文提出了一种基于HMM的驾驶员驾驶意图识别方法,通过对驾驶员的行为数据进行建模和分析,实现对驾驶员驾驶意图的实时识别。

e8c3debb1fe259b9e55c2ba8d2d1ecaf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

      根据驾驶员行车过程,在路面上主要有急加速,加速,匀速保持,减速,急减速几类驾驶状态,上述五种驾驶状态分别简写为,HD,D,N,P,HP,在设定的时间节点之间,五种驾驶状态即能够反映驾驶员目前驾驶意图。每种每一类驾驶状态分别有相应的驾驶动作,主要体现在加速踏板开度,刹车踏板开度,及其变化率上。假设在行驶路面上五种驾驶意图类型分别为(n=1,2,3,4,5),在连续的时间节点内,驾驶意图状态会概率性转移或者保持不变。驾驶观测值类型为(m=1,2,3),,与的映射关系以概率值表征。驾驶意图与观测值以节点网络关联模式的模型如图1,图中a,b表示发生概率,表示驾驶员驾驶意图。 

17c455c667264a9fdaa94bd494f4a4a8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

     隐马尔可夫模型(Hidden Markov Model,HMM)是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。隐马尔可夫模型是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。所以,隐马尔可夫模型是一个双重随机过程具有一定状态数的隐马尔可夫链和显示随机函数集。到了90年代,HMM在模式识别、故障诊断等领域也开始得到应用。 

99d494b25e481d10de92a8a077cb694a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   隐马尔科夫模型(HMM)是一种统计模型,它用来描述一个隐藏的马尔科夫过程产生的可观测数据序列。HMM由两个随机过程组成,一个是隐藏的马尔科夫过程,另一个是观测过程。隐藏的马尔科夫过程是一个离散时间马尔科夫链,其状态之间的转换满足马尔科夫性质。观测过程是在给定隐藏状态下产生观测数据的条件概率分布。
   驾驶意图识别:给定一个新的观测序列,使用Viterbi算法计算最有可能的隐藏状态序列,从而识别驾驶意图。具体来说,根据已训练的HMM模型,计算观测序列在各个隐藏状态下的概率,选择概率最大的隐藏状态作为驾驶意图。
  驾驶意图预测:为了实现实时驾驶意图预测,本文采用滑动窗口方法。将新的观测数据加入到窗口中,并将窗口中最早的观测数据移除。实现对驾驶员驾驶意图的实时预测。

3.MATLAB核心程序
```function [LL1,prior1,transmat1,mu1,Sigma1,mixmat1,LL2,prior2,transmat2,mu2,Sigma2,mixmat2,LL3,prior3,transmat3,mu3,Sigma3,mixmat3,LL4,prior4,transmat4,mu4,Sigma4,mixmat4,LL5,prior5,transmat5,mu5,Sigma5,mixmat5]=func_HMM_Train(Dat1,Dat2,Dat3,Dat4,Dat5,Dat1s,Dat2s,Dat3s,Dat4s,Dat5s);

M = 2;
Q = 3;

O = 1;
T = 3;
nex = length(Dat1);
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
Sigma0 = repmat(eye(O), [1 1 Q M]);
indices = randperm(Tnex);
mu0 = reshape(Dat1s(:,indices(1:(Q
M))), [O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL1, prior1, transmat1, mu1, Sigma1, mixmat1] = mhmm_em(Dat1s, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 1000);

nex = length(Dat2);
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
Sigma0 = repmat(eye(O), [1 1 Q M]);
indices = randperm(Tnex);
mu0 = reshape(Dat2s(:,indices(1:(Q
M))), [O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL2, prior2, transmat2, mu2, Sigma2, mixmat2] = mhmm_em(Dat2s, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 1000);

nex = length(Dat3);
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
Sigma0 = repmat(eye(O), [1 1 Q M]);
indices = randperm(Tnex);
mu0 = reshape(Dat3s(:,indices(1:(Q
M))), [O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL3, prior3, transmat3, mu3, Sigma3, mixmat3] = mhmm_em(Dat3s, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 1000);

nex = length(Dat4);
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
Sigma0 = repmat(eye(O), [1 1 Q M]);
indices = randperm(Tnex);
mu0 = reshape(Dat4s(:,indices(1:(Q
M))), [O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL4, prior4, transmat4, mu4, Sigma4, mixmat4] = mhmm_em(Dat4s, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 1000);

nex = length(Dat5);
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
Sigma0 = repmat(eye(O), [1 1 Q M]);
indices = randperm(Tnex);
mu0 = reshape(Dat5s(:,indices(1:(Q
M))), [O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL5, prior5, transmat5, mu5, Sigma5, mixmat5] = mhmm_em(Dat5s, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', 1000);
```

相关文章
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
15天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
16天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
16天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
35 3
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
17天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
27天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
下一篇
无影云桌面