大数据数据采集的数据采集(收集/聚合)的Flume之数据采集流程的Selector的多路复用模式

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 在大数据处理和管理中,数据采集是非常重要的一环。为了更加高效地进行数据采集,Flume作为一种流式数据采集工具得到了广泛的应用。其中,Flume的Sink Processor模块是实现数据输出和处理的核心模块之一。本文将介绍Flume中的Selector多路复用模式,讲解其数据采集流程。


  1. Selector多路复用模式的概念

Selector多路复用模式是Flume中的一种Sink Processor类型,它可以将相同格式的数据分别发送到不同的Sink模块中,并提供了高效、可靠的数据处理方案。

  1. Selector多路复用模式的配置

在Flume中,我们需要配置Selector多路复用模式的相关参数,以便与多个Sink模块进行连接和操作。例如:

# flume.conf
agent.sources = source
agent.channels = channel
agent.sinks = sink1 sink2 sink3
agent.sources.source.type = exec
agent.sources.source.command = tail -F /var/log/syslog
agent.channels.channel.type = memory
agent.channels.channel.capacity = 1000
agent.sinks.sink1.type = logger
agent.sinks.sink1.channel = channel
agent.sinks.sink2.type = hdfs
agent.sinks.sink2.hdfs.path = /flume/data/%y-%m-%d/
agent.sinks.sink2.hdfs.filePrefix = syslog-
agent.sinks.sink2.rollInterval = 3600
agent.sinks.sink2.rollSize = 268435456
agent.sinks.sink2.rollCount = 0
agent.sinks.sink2.retryInterval = 1800
agent.sinks.sink2.channel = channel
agent.sinks.sink3.type = avro
agent.sinks.sink3.hostname = localhost
agent.sinks.sink3.port = 41414
agent.sinks.sink3.batchSize = 1000
agent.sinks.sink3.channel = channel
agent.sinkgroups = group1
agent.sinkgroups.group1.sinks = sink1 sink2 sink3
agent.sinkgroups.group1.processor.type = selector
agent.sinkgroups.group1.processor.selector.type = multiplexing
agent.sinkgroups.group1.processor.selector.header = routing_key
agent.sinkgroups.group1.processor.selector.mapping.key1 = sink1
agent.sinkgroups.group1.processor.selector.mapping.key2 = sink2
agent.sinkgroups.group1.processor.selector.default = sink3
agent.sources.source.channels = channel
agent.sinks.sink1.channel = channel

这里定义了一个Selector多路复用模式并指定了相关配置参数,如多个Sink模块、复制规则等。在本例中,我们使用exec Source来模拟生成数据,并将其存入Memory Channel中。

  1. Selector多路复用模式的数据采集流程

通过以上配置,我们已经完成了Selector多路复用模式的配置,现在来看一下Selector多路复用模式的具体数据采集流程:

  • Flume的Source模块将数据发送至Channel模块;
  • Channel模块缓存数据,并将其传输给Selector多路复用模式模块;
  • Selector多路复用模式根据路由键将相同格式的数据分别发送到不同的Sink模块中;
  • 数据处理完毕后,Sink模块返回操作结果并通知其他模块。
  1. Selector多路复用模式的优缺点

Selector多路复用模式作为Flume中的重要组成部分,具有以下优缺点:

  • 优点:可以将相同格式的数据分别发送到不同的Sink模块中,提高了数据处理效率;支持多种路由键映射规则,如根据Header字段、正则表达式等;提供了较为灵活的配置方式。
  • 缺点:需要根据实际情况进行调整和优化;可能需要额外的硬件资源来处理大量的数据。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
数据采集 机器学习/深度学习 存储
大数据的处理流程
【10月更文挑战第16天】
218 2
|
2月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
81 5
|
6天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
33 4
|
2月前
|
数据采集 传感器 大数据
大数据中数据采集 (Data Collection)
【10月更文挑战第17天】
132 2
|
2月前
|
消息中间件 存储 分布式计算
大数据-72 Kafka 高级特性 稳定性-事务 (概念多枯燥) 定义、概览、组、协调器、流程、中止、失败
大数据-72 Kafka 高级特性 稳定性-事务 (概念多枯燥) 定义、概览、组、协调器、流程、中止、失败
43 4
|
2月前
|
SQL 分布式计算 大数据
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
大数据-168 Elasticsearch 单机云服务器部署运行 详细流程
64 2
|
2月前
|
消息中间件 缓存 大数据
大数据-57 Kafka 高级特性 消息发送相关01-基本流程与原理剖析
大数据-57 Kafka 高级特性 消息发送相关01-基本流程与原理剖析
49 3
|
2月前
|
设计模式 NoSQL 网络协议
大数据-48 Redis 通信协议原理RESP 事件处理机制原理 文件事件 时间事件 Reactor多路复用
大数据-48 Redis 通信协议原理RESP 事件处理机制原理 文件事件 时间事件 Reactor多路复用
44 2
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
50 0
|
4月前
|
存储 分布式计算 大数据
【Flume的大数据之旅】探索Flume如何成为大数据分析的得力助手,从日志收集到实时处理一网打尽!
【8月更文挑战第24天】Apache Flume是一款高效可靠的数据收集系统,专为Hadoop环境设计。它能在数据产生端与分析/存储端间搭建桥梁,适用于日志收集、数据集成、实时处理及数据备份等多种场景。通过监控不同来源的日志文件并将数据标准化后传输至Hadoop等平台,Flume支持了性能监控、数据分析等多种需求。此外,它还能与Apache Storm或Flink等实时处理框架集成,实现数据的即时分析。下面展示了一个简单的Flume配置示例,说明如何将日志数据导入HDFS进行存储。总之,Flume凭借其灵活性和强大的集成能力,在大数据处理流程中占据了重要地位。
113 3