《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(3)

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(3)

《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(2) https://developer.aliyun.com/article/1232910?groupCode=polardbforpg


3、其他预置数据

如前文演示中看到的,dataset目录下面还有其他预先准备好的CSV数据,都可以手工创建表,然后用COPY命令把数据导进来。为了方便使用,PolarDB的插件其实还额外提供了一批以load开头的函数,执行这些函数就能自动创建数据库的表,并把CSV的数据导入到表中。如下图所示:


image.png


目前插件里包含了这5份数据,分别是波士顿房价数据、鸢尾花数据、糖尿病数据、手写数字数据,以及苹果公司股价数

据。其中房价数据、糖尿病数据和股价数据可以用来做回归分析,另外两份数据可以用来做分类分析。


(二)处理数据


1、定义缺失值


鸢尾花这150条数据是非常完整并且干净的数据,如前文所说,现实工作中的数据往往会有许多缺失值或者异常值,需要

先对数据做清洗。比方说,如果我们现在插入一条新的鸢尾花的样本,但部分的数据缺失了,希望分析工具在数据缺失的

时候自动填充上默认值(例如0)。PolarDB里面有一个数据库字段默认值的功能,在数据库字段缺失的时候,就会自动

使用默认值来填充。


image.png


如上图所示,给字段加默认值有两种方法:第一种是在表还不存在的时候,创建表的时候直接定义字段的默认值,就像

图中左边的代码一样,也用到了CREATE TABLE;第二种是表已经创建好了,想给已经存在的字段添加默认值或者修改默认值,这时候就需要用到另一个命令,ALTER TABLE,代码就像图中右边一样,给刚刚创建的表前4个字段全部加上默认值。


2、使用缺失值


定义好了默认值,接下来就可以通过INSERT命令来插入默认值了。


image.png


如上图所示,PolarDB中有两种INSERT方式可以用到默认值:第一种就像左边的代码,在INSERT的时候,不指定有默认值的列;第二种,指定了列,但values里面用default关键字。这两种方式都能用上默认值,但用COPY导入数据的话,能

不能用上默认值呢?我们来测试一下。

再看一下flower表的定义:


image.png


其中每个字段的默认值是空(即null)。尝试插入一行脏数据,除了品类,其他的字段都不指定:


image.png


可以看到现在插进来的这行数据里面,其他字段的值都是空的。接着用Alter Table去添加数据库字段的默认值:`alter table flowers alter column sepal_length set default 0, alter column sepal_width set default 0, alter column patal_length set default 0, alter column patal_width set default 0`。再次查看flowers表的定义:


image.png


现在字段的默认值都已经有了,全部都是0。然后再试试重新insert一条bad2的脏数据:


image.png


此时,bad2的其他字段都是0。可以再试试另外一种用default关键词的insert的方式:


image.png


可以看到bad2与bad3都使用了默认值0。最后再测试一下COPY命令是否可以用到默认值。首先清空数据:


image.png


然后编辑test.csv,手工加入3行脏数据。最后通过COPY命令,把test.csv的数据导进来:


image.png


一共导入了153行,但脏数据的字段依然为空:


image.png


《PolarDB for PostgreSQL源码与应用实战》——PolarDB for PostgreSQL用SQL做数据分析(4) https://developer.aliyun.com/article/1232907?groupCode=polardbforpg






相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
15天前
|
数据库
|
2月前
|
关系型数据库 分布式数据库 数据库
开源云原生数据库PolarDB PostgreSQL 15兼容版本正式发布
PolarDB进行了深度的内核优化,从而实现以更低的成本提供商业数据库的性能。
|
2月前
|
SQL 关系型数据库 C语言
PostgreSQL SQL扩展 ---- C语言函数(三)
可以用C(或者与C兼容,比如C++)语言编写用户自定义函数(User-defined functions)。这些函数被编译到动态可加载目标文件(也称为共享库)中并被守护进程加载到服务中。“C语言函数”与“内部函数”的区别就在于动态加载这个特性,二者的实际编码约定本质上是相同的(因此,标准的内部函数库为用户自定义C语言函数提供了丰富的示例代码)
|
3月前
|
SQL 存储 关系型数据库
PostgreSQL核心之SQL基础学习
PostgreSQL核心之SQL基础学习
43 3
|
3月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
360 0
|
3月前
|
数据可视化 前端开发 JavaScript
Echarts+JS实现数据分析可视化大屏!!附源码!!
Echarts+JS实现数据分析可视化大屏!!附源码!!
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python心理健康医学数据分析与逻辑回归预测(源码+数据集+论文)【独一无二】
【python】python心理健康医学数据分析与逻辑回归预测(源码+数据集+论文)【独一无二】
|
2月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
4月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
110 13
|
4月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB