PolarDB PostgreSQL 版
云原生数据库 PolarDB PostgreSQL 版是阿里云完全自主研发的云原生关系型数据库产品,100%兼容 PostgreSQL。
PolarDB 体验报告
PolarDB,阿里云的云原生数据库,提供高性能(4倍于PostgreSQL)、高可用性、可扩展性和安全保障。包括分布式版本PolarDB-X和共享存储版本PolarDB-PG。部署过程简易快捷,但文档和指南有待更新和完善。建议增强PXD工具文档、更新PolarDB-PG指南,以及提升PolarDB-PG性能和扩展PolarDB-X功能。测试者对PolarDB整体表现满意,推荐开发者试用。
智能辅助驾驶业务遭遇大表瓶颈,小鹏汽车如何破局?
小鹏汽车在智能辅助驾驶业务中遇到数据库性能挑战,如大表查询慢、频繁更新和存储空间快速膨胀。他们原使用的是社区版PostgreSQL,但随着数据量增长,性能瓶颈日益凸显。为了解决这些问题,小鹏汽车采用了阿里云的PolarDB-PG。 PolarDB-PG 的存储具备弹性扩容的能力,最大可支持 100 TB 存储空间。它的大表优化和弹性跨机并行查询(ePQ),成功解决了社区 PostgreSQL 针对大表的查询和并发更新慢的问题。在小鹏汽车的智能辅助驾驶业务上,实现了每日 TB 级大数据表的 7000 万行更新和大数据表秒级分析查询。
5分钟免费体验PolarDB PG版Serverless的极致弹性!
基于阿里云瑶池数据库解决方案体验馆,带你体验PolarDB PG版 Serverless形态下的性能压测环境,基于可选择的标准压测工具进行压测,构造弹性场景进行压测,实时动态展示弹性能力、价格和性价比结果,压测环境可开放定制修改、可重复验证。参与活动即有机会获得小爱随身音响、体脂秤、极客时间VIP月卡、鼠标垫等精美礼品。
【公测】PolarDB PostgreSQL版Serverless功能免费使用!
【公测】PolarDB PostgreSQL版Serverless功能免费使用,公测于2024年3月28日开始,持续三个月,公测期间可以免费使用!
一文熟悉PolarDB-PG 分区表核心特性
在 PolarDB-PG 数据库中,分区表 (Partitioned Table) 使您能够将非常大的表分解为更小且更易于管理的部分,这个部分称为分区 (Partition) 。 每个分区都是一个独立的对象,具有自己的名称和可选的存储特性。本文首先简单的介绍了分区表策略以及它的优势特点,然后介绍了PolarDB-PG 分区表支持的查询优化特性,最后介绍了分区表上的本地索引和全局索引,从而帮助用户对PolarDB-PG 分区表有一个全面的了解。
成都晨云信息技术完成阿里云PolarDB数据库产品生态集成认证
近日,成都晨云信息技术有限责任公司(以下简称晨云信息)与阿里云PolarDB PostgreSQL版数据库产品展开产品集成认证。测试结果表明,晨云信息旗下晨云-站群管理系统(V1.0)与阿里云以下产品:开源云原生数据库PolarDB PostgreSQL版(V11),完全满足产品兼容认证要求,兼容性良好,系统运行稳定。
PolarDB PostgreSQL版:Oracle兼容的高性能数据库
PolarDB PostgreSQL版是一款高性能的数据库,具有与Oracle兼容的特性。它采用了分布式架构,可以轻松处理大量的数据,同时还支持多种数据类型和函数,具有高可用性和可扩展性。它还提供了丰富的管理工具和性能优化功能,为企业提供了可靠的数据存储和处理解决方案。PolarDB PostgreSQL版在数据库领域具有很高的竞争力,可以满足各种企业的需求。
PolarDB-PG 安全体系全解,如何给客户7*24的放心
随着企业业务全面向数字化、在线化、智能化演进,企业面临着呈指数级递增的海量存储需求和挑战,传统的商业数据库已经难以满足和响应快速变化持续增长的业务诉求。云数据库凭借着成本、性能、业务连续性以及在线业务扩展等优势成为企业更优的选择。随着企业数据逐步上云,云数据库安全变得至关重要。云数据库安全不仅可以防止未授权访问和数据泄露问题,保护数据的机密性和完整性,还可以保护企业的声誉和客户信任,保障企业遵守法律法规的要求。只有通过确保云数据库的安全性,企业才能够在数字化时代中安心地利用云服务。
沉浸式学习PostgreSQL|PolarDB 21,相似图像搜索
传统数据库不支持图像类型, 图像相似计算函数, 图像相似计算操作服, 相似排序操作符. 所以遇到类似的需求, 需要自行编写应用来解决. PG|PolarDB 通过imgsmlr插件, 可以将图像转换为向量特征值, 使用相似距离计算函数得到相似值, 使用索引加速相似度排序, 快速获得相似图片, 实现以图搜图. 也可以通过pgvector插件来存储图片向量特征值, 结合大模型服务(抠图、图像向量转换), 可以实现从图像转换、基于图像的相似向量检索全流程能力.
沉浸式学习PostgreSQL|PolarDB 20: 学习成为数据库大师级别的优化技能
在上一个实验《沉浸式学习PostgreSQL|PolarDB 19: 体验最流行的开源企业ERP软件 odoo》 中, 学习了如何部署odoo和polardb|pg. 由于ODOO是非常复杂的ERP软件, 对于关系数据库的挑战也非常大, 所以通过odoo业务可以更快速提升同学的数据库优化能力, 发现业务对数据库的使用问题(如索引、事务对锁的运用逻辑问题), 数据库的代码缺陷, 参数或环境配置问题, 系统瓶颈等.
直播预告 | PolarDB-PG架构简介及日常运维浅析
本次分享将先从架构、特性、开源等三个维度解读PolarDB-PG的整体架构。在大家对架构有一定深入理解后,将继续从备份恢复、存储层、计算层扩容、只读节点提升、高可用等五个维度,对PolarDB-PG的日常运维进行深入浅出的介绍,为“唯手熟尔”的运维打好理论基础。
沉浸式学习PostgreSQL|PolarDB 18: 通过GIS轨迹相似伴随|时态分析|轨迹驻点识别等技术对拐卖、诱骗场景进行侦查
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
直播预告 | MySQL & PostgreSQL 终极大比拼!
MySQL、PostgreSQL,乃至各种各样的数据库,孰强孰弱,难以辨别。究其原因,只因”不识庐山真面目,只缘身在此山中“。只需跳出”数据库“三字,一切自然看的分明。9月22日,解读如何换个维度,发现真相。
新生产力工具AI推动下一级人类文明跃迁? AI如何倒逼数据库的进化? AI加持后的数据库应用场景有哪些变化?
新生产力工具AI会催生下一级人类文明跃迁吗? 数据库进化出了哪些与AI相结合的能力? AI加持后的数据库应用场景有哪些变化?
如何基于PolarDB-PG处理空间数据
《PolarDB for PostgreSQL动手实践》系列,带您体验基于PolarDB for PostgreSQL部署开源空间处理插件PostGIS,并执行空间查询。
高性能特性体验:ePQ 的详解与实战
PolarDB PostgreSQL 引擎提供了弹性跨机并行查询(elastic Parallel Execution)的功能,支持多个计算节点分布式地执行 SQL 查询。本实验将体验该功能。
如何一键本地部署PolarDB for PostgreSQL
《PolarDB for PostgreSQL动手实践》系列第一期,带您体验如何本地一键安装快速部署云原生开源数据库PolarDB for PostgreSQL。
沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
直播预告 | PolarDB-PG 企业级特性 —— Shared Server特性详解
PolarDB-PG 提供了 Shared Server 内置连接池功能,实现了用户连接与后端进程的解绑。后端进程在运行时可以根据实时负载和进程污染情况进行动态转换。负载调度算法使用 Stall 机制弹性控制 Worker 数量,同时避免用户连接饿死。从根本上解决了高并发或者大量短连接带来的性能、稳定性问题。
直播预告 | PolarDB-PG 企业级特性 —— 闪回特性详解
闪回表 (Flashback Table) 功能是PolarDB-PG数据库高可用的一个重要特性,支持在数据人为误操作时,快速闪回到某个时间点,恢复以及查看丢失的数据。本期分享将会介绍闪回表、闪回日志的基本原理以及特性,并演示闪回功能的使用方法。
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间
沉浸式学习PostgreSQL|PolarDB 10: 社交、刑侦等业务, 关系图谱搜索
业务场景1 介绍: 社交、刑侦等业务, 关系图谱搜索 - 营销、分销、流量变现、分佣、引爆流行、裂变式传播、家谱、选课、社交、人才库、刑侦、农产品溯源、药品溯源 图式搜索是PolarDB | PostgreSQL在(包括流计算、全文检索、图式搜索、K-V存储、图像搜索、指纹搜索、空间数据、时序数据、推荐等)诸多特性中的一个。 采用CTE语法,可以很方便的实现图式搜索(N度搜索、最短路径、点、边属性等)。 其中图式搜索中的:层级深度,是否循环,路径,都是可表述的。
沉浸式学习PostgreSQL|PolarDB 9: AI大模型+向量数据库, 提升AI通用机器人在专业领域的精准度, 完美诠释柏拉图提出的“知识是回忆而不是知觉”
越来越多的企业和个人希望能够利用LLM和生成式人工智能来构建专注于其特定领域的具备AI能力的产品。目前,大语言模型在处理通用问题方面表现较好,但由于训练语料和大模型的生成限制,对于垂直专业领域,则会存在知识深度和时效性不足的问题。在信息时代,由于企业的知识库更新频率越来越高,并且企业所拥有的垂直领域知识库(例如文档、图像、音视频等)往往是未公开或不可公开的。因此,对于企业而言,如果想在大语言模型的基础上构建属于特定垂直领域的AI产品,就需要不断将自身的知识库输入到大语言模型中进行训练。
沉浸式学习PostgreSQL|PolarDB 8: 电商|短视频|新闻|内容推荐业务(根据用户行为推荐相似内容)、监控预测报警系统(基于相似指标预判告警)、音视图文多媒体相似搜索、人脸|指纹识别|比对 - 向量搜索应用
1、在电商业务中, 用户浏览商品的行为会构成一组用户在某个时间段的特征, 这个特征可以用向量来表达(多维浮点数组), 同时商品、店铺也可以用向量来表达它的特征. 那么为了提升用户的浏览体验(快速找到用户想要购买的商品), 可以根据用户向量在商品和店铺向量中进行相似度匹配搜索. 按相似度来推荐商品和店铺给用户. 2、在短视频业务中, 用户浏览视频的行为, 构成了这个用户在某个时间段的兴趣特征, 这个特征可以用向量来表达(多维浮点数组), 同时短视频也可以用向量来表达它的特征. 那么为了提升用户的观感体验(推荐他想看的视频), 可以在短视频向量中进行与用户特征向量的相似度搜索.
沉浸式学习PostgreSQL|PolarDB 7: 移动社交、多媒体、内容分发、游戏业务场景, 跨地域多机房的智能加速
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差. 网络延迟对游戏业务的影响则更加严重. 为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心. 由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
沉浸式学习PostgreSQL|PolarDB 6: 预定会议室、划分管辖区
会议室预定系统最关键的几个点: 1、查询: 按位置、会议室大小、会议室设备(是否有投屏、电话会议、视频会议...)、时间段查询符合条件的会议室. 2、预定: 并写入已订纪录. 3、强约束: 防止同一个会议室的同一个时间片出现被多人预定的情况.
沉浸式学习PostgreSQL|PolarDB 5: 零售连锁、工厂等数字化率较低场景的数据分析
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?
沉浸式学习PostgreSQL|PolarDB 4: 跨境电商场景, 快速判断商标|品牌侵权
很多业务场景中需要判断商标侵权, 避免纠纷. 例如 电商的商品文字描述、图片描述中可能有侵权内容. 特别是跨境电商, 在一些国家侵权查处非常严厉. 注册公司名、产品名时可能侵权. 在写文章时, 文章的文字内容、视频内容、图片内容中的描述可能侵权. 例如postgresql是个商标, 如果你使用posthellogresql、postgresqlabc也可能算侵权. 以跨境电商为力, 为了避免侵权, 在发布内容时需要商品描述中出现的品牌名、产品名等是否与已有的商标库有相似. 对于跨境电商场景, 由于店铺和用户众多, 商品的修改、发布是比较高频的操作, 所以需要实现高性能的字符串相似匹配功能.
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .
富士胶片公司完成阿里云PolarDB数据库开源产品兼容适配
近日,富士胶片(中国)投资有限公司(以下简称富士胶片)与阿里云PolarDB 开源数据库社区展开产品集成认证。测试结果表明,富士胶片旗下富医睿影与阿里云以下产品:开源云原生数据库 PolarDB PostgreSQL 版(V11),完全满足产品兼容认证要求,兼容性良好,系统运行稳定。
沉浸式学习PostgreSQL|PolarDB 2: 电商高并发秒杀业务、跨境电商高并发队列消费业务
业务场景介绍: 高并发秒杀业务 秒杀业务在电商中最为常见, 可以抽象成热点记录(行)的高并发更新. 而通常在数据库中最细粒度的锁是行锁, 所以热门商品将会被大量会话涌入, 出现锁等待, 甚至把数据库的会话占满, 导致其他请求无法获得连接产生业务故障. 业务场景介绍: 高并发队列消费业务 在跨境电商业务中可能涉及这样的场景, 由于有上下游产业链的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理.
沉浸式学习PostgreSQL|PolarDB 1: 短视频推荐去重、UV统计分析场景
本实验场景:短视频推荐去重、UV统计分析场景. 欢迎一起来建设数据库沉浸式学习教学素材库, 帮助开发者用好数据库, 提升开发者竞争力, 为企业降本提效. 本文的实验可以使用永久免费的云起实验室来完成. https://developer.aliyun.com/adc/scenario/exp/f55dbfac77c0467a9d3cd95ff6697a31 如果你本地有docker环境也可以把镜像拉到本地来做实验.
基于PolarDB PostgreSQL版和LLM构建企业专属Chatbot
随着ChatGPT的问世,人们开始认识到大语言模型(LLM,Large language model)和生成式人工智能在多个领域的潜力,如文稿撰写、图像生成、代码优化和信息搜索等。LLM已成为个人和企业的得力助手,并朝着超级应用的方向发展,引领着新的生态系统。本文介绍如何基于PolarDB PostgreSQL版向量数据库和LLM构建企业专属Chatbot。
云原生时代下的国产开源数据库是如何实现更多的技术创新和突破?听听他们怎么说
大咖云集,燃爆夏日。8月5日,由PostgreSQL中文社区、阿里云PolarDB开源社区、蚂蚁OceanBase开源社区联合举办的开源数据库技术沙龙在杭州召开,来自PG中文社区、阿里云PolarDB、蚂蚁集团、OceanBase等专家大咖全方位解读了国产数据库核心技术与架构、时下成熟的解决方案及最佳实践,并与高校、伙伴探讨了如何推动产教结合,加快国产数据库核心人才培养。近百位业内专家与开源技术爱好者、资深开发者们齐聚一堂,共话开源数据库技术与人才培养。
PolarDB | PostgreSQL 高并发队列处理业务的数据库性能优化实践
在电商业务中可能涉及这样的场景, 由于有上下游关系的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理. 如果是高并发的处理, 因为大家都按一个顺序获取, 容易产生热点, 可能遇到取出队列遇到锁冲突瓶颈、IO扫描浪费、CPU计算浪费的瓶颈. 以及在清除已处理订单后, 索引版本未及时清理导致的回表版本判断带来的IO浪费和CPU运算浪费瓶颈等. 本文将给出“队列处理业务的数据库性能优化”优化方法和demo演示. 性能提升10到20倍.
用PolarDB|PostgreSQL提升通用ai机器人在专业领域的精准度
chatgpt这类通用机器人在专业领域的回答可能不是那么精准, 原因有可能是通用机器人在专业领域的语料库学习有限, 或者是没有经过专业领域的正反馈训练. 为了提升通用机器人在专业领域的回答精准度, 可以输入更多专业领域相似内容作为prompt来提升通用ai机器人在专业领域的精准度. PolarDB | PostgreSQL 开源数据库在与openai结合的过程中起到的核心作用是: 基于向量插件的向量类型、向量索引、向量相似搜索操作符, 加速相似内容的搜索. 通过“问题和正确答案”作为参考输入, 修正openapi在专业领域的回答精准度.
PolarDB开源社区走进天津、温州高校,现场授课带领学生动手实践学
6月18日-19日,PolarDB开源社区携手生态伙伴共同走进北京科技大学天津学院、温州理工大学两所高校。PolarDB开源、研发及架构师、生态伙伴布道师们进行现场授课,带领学生进行动手实践,通过实验环境让学生领用PolarDB,通过PolarDB人才认证考试检验学习成果,让学生系统化的学习PolarDB数据库技术。