PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

测试环境为macOS+docker, PolarDB部署请参考下文:

Timescale DB 部署

目前PolarDB 开源版本兼容PG 11, 所以只能使用TimescaleDB 1.7.x的版本, 未来PolarDB升级到14后, 可以使用TimescaleDB 2.x的版本.

cd ~  
  
git clone -b 1.7.x --depth 1 https://github.com/timescale/timescaledb  
cd timescaledb  
  
./bootstrap  -DREGRESS_CHECKS=OFF  
  
cd build && make  
  
sudo make install  

修改polardb配置

vi ~/tmp_master_dir_polardb_pg_1100_bld/postgresql.conf  
  
vi ~/tmp_replica_dir_polardb_pg_1100_bld1/postgresql.conf  
vi ~/tmp_replica_dir_polardb_pg_1100_bld2/postgresql.conf  
  
shared_preload_libraries = 'timescaledb,......'  

更多的参数配置和优化建议参考:

使用TimescaleDB

postgres=# create extension timescaledb ;  
WARNING:   
WELCOME TO  
 _____ _                               _     ____________    
|_   _(_)                             | |    |  _  \ ___ \   
  | |  _ _ __ ___   ___  ___  ___ __ _| | ___| | | | |_/ /   
  | | | |  _ ` _ \ / _ \/ __|/ __/ _` | |/ _ \ | | | ___ \   
  | | | | | | | | |  __/\__ \ (_| (_| | |  __/ |/ /| |_/ /  
  |_| |_|_| |_| |_|\___||___/\___\__,_|_|\___|___/ \____/  
               Running version 1.7.4  
For more information on TimescaleDB, please visit the following links:  
  
 1. Getting started: https://docs.timescale.com/getting-started  
 2. API reference documentation: https://docs.timescale.com/api  
 3. How TimescaleDB is designed: https://docs.timescale.com/introduction/architecture  
  
Note: TimescaleDB collects anonymous reports to better understand and assist our users.  
For more information and how to disable, please see our docs https://docs.timescaledb.com/using-timescaledb/telemetry.  
  
CREATE EXTENSION  
postgres=# \dx  
                                      List of installed extensions  
    Name     | Version |   Schema   |                            Description                              
-------------+---------+------------+-------------------------------------------------------------------  
 plpgsql     | 1.0     | pg_catalog | PL/pgSQL procedural language  
 postgis     | 3.3.2   | public     | PostGIS geometry and geography spatial types and functions  
 timescaledb | 1.7.5   | public     | Enables scalable inserts and complex queries for time-series data  
(3 rows)  

创建普通时序表

-- We start by creating a regular SQL table  
  
CREATE TABLE conditions (  
  time        TIMESTAMPTZ       NOT NULL,  
  location    TEXT              NOT NULL,  
  temperature DOUBLE PRECISION  NULL,  
  humidity    DOUBLE PRECISION  NULL  
);  

将普通表转化为timescale时序表

-- This creates a hypertable that is partitioned by time  
--   using the values in the `time` column.  
  
SELECT create_hypertable('conditions', 'time');  

写入测试数据

INSERT INTO conditions(time, location, temperature, humidity)  
  VALUES (NOW(), 'office', 70.0, 50.0);  

查询时序表基表内容

SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  

基表自动分片存储

postgres=# \d+ conditions  
                                            Table "public.conditions"  
   Column    |           Type           | Collation | Nullable | Default | Storage  | Stats target | Description   
-------------+--------------------------+-----------+----------+---------+----------+--------------+-------------  
 time        | timestamp with time zone |           | not null |         | plain    |              |   
 location    | text                     |           | not null |         | extended |              |   
 temperature | double precision         |           |          |         | plain    |              |   
 humidity    | double precision         |           |          |         | plain    |              |   
Indexes:  
    "conditions_time_idx" btree ("time" DESC)  
Triggers:  
    ts_insert_blocker BEFORE INSERT ON conditions FOR EACH ROW EXECUTE PROCEDURE _timescaledb_internal.insert_blocker()  
Child tables: _timescaledb_internal._hyper_1_1_chunk  
INSERT INTO conditions(time, location, temperature, humidity)   
select now()+(id||' second')::interval,   
  md5((random()*1000)::int::text),   
  random()*100, random()*100   
  from generate_series(1,1000000) id;  
  
  
postgres=# \d+ conditions  
                                            Table "public.conditions"  
   Column    |           Type           | Collation | Nullable | Default | Storage  | Stats target | Description   
-------------+--------------------------+-----------+----------+---------+----------+--------------+-------------  
 time        | timestamp with time zone |           | not null |         | plain    |              |   
 location    | text                     |           | not null |         | extended |              |   
 temperature | double precision         |           |          |         | plain    |              |   
 humidity    | double precision         |           |          |         | plain    |              |   
Indexes:  
    "conditions_time_idx" btree ("time" DESC)  
Triggers:  
    ts_insert_blocker BEFORE INSERT ON conditions FOR EACH ROW EXECUTE PROCEDURE _timescaledb_internal.insert_blocker()  
Child tables: _timescaledb_internal._hyper_1_1_chunk,  
              _timescaledb_internal._hyper_1_2_chunk  
  
  
postgres=# SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  
             time              |             location             |    temperature    |     humidity        
-------------------------------+----------------------------------+-------------------+-------------------  
 2023-01-16 16:27:12.442233+00 | 70efdf2ec9b086079795c442636b55fb | 0.917297508567572 |  45.0286225881428  
 2023-01-16 16:27:11.442233+00 | b056eb1587586b71e2da9acfe4fbd19e |  59.0947337448597 |  49.3321735877544  
 2023-01-16 16:27:10.442233+00 | 28dd2c7955ce926456240b2ff0100bde |  26.5667649917305 |  88.5223139543086  
 2023-01-16 16:27:09.442233+00 | 1ecfb463472ec9115b10c292ef8bc986 |  12.9402264486998 |   23.304360313341  
 2023-01-16 16:27:08.442233+00 | 82161242827b703e6acf9c726942a1e4 |  48.1451884843409 |  97.9283190798014  
 2023-01-16 16:27:07.442233+00 | 812b4ba287f5ee0bc9d43bbf5bbe87fb |  76.0097410064191 |  20.2729247976094  
 2023-01-16 16:27:06.442233+00 | d645920e395fedad7bbbed0eca3fe2e0 |  97.6623016409576 |  22.9934238363057  
 2023-01-16 16:27:05.442233+00 | 0d0fd7c6e093f7b804fa0150b875b868 |  7.43439155630767 |  96.3830435648561  
 2023-01-16 16:27:04.442233+00 | 6e2713a6efee97bacb63e52c54f0ada0 |  30.4179009050131 |  36.7151976097375  
 2023-01-16 16:27:03.442233+00 | fb7b9ffa5462084c5f4e7e85a093e6d7 |  22.1182454843074 |  23.0733227450401  
 2023-01-16 16:27:02.442233+00 | d1f255a373a3cef72e03aa9d980c7eca |  95.6964490003884 |  43.6015542596579  
 2023-01-16 16:27:01.442233+00 | 89f0fd5c927d466d6ec9a21b9ac34ffa |  60.8098595868796 |  26.7892859410495  
 ...  

分片字段自动创建索引

postgres=# explain SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  
                                                            QUERY PLAN                                                               
-----------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.42..7.77 rows=100 width=56)  
   ->  Custom Scan (ChunkAppend) on conditions  (cost=0.42..32778.88 rows=446297 width=56)  
         Order: conditions."time" DESC  
         ->  Index Scan using _hyper_1_2_chunk_conditions_time_idx on _hyper_1_2_chunk  (cost=0.42..32778.88 rows=446297 width=56)  
         ->  Index Scan using _hyper_1_1_chunk_conditions_time_idx on _hyper_1_1_chunk  (cost=0.42..48162.05 rows=656108 width=56)  
(5 rows)  

实时聚合基表数据例子

https://legacy-docs.timescale.com/v1.7/using-timescaledb/continuous-aggregates

创建基表

CREATE TABLE conditions (  
      time TIMESTAMPTZ NOT NULL,  
      device INTEGER NOT NULL,  
      temperature FLOAT NOT NULL,  
      PRIMARY KEY(time, device)  
);  
SELECT create_hypertable('conditions', 'time');  

创建自动聚合视图

CREATE VIEW conditions_summary_hourly  
WITH (timescaledb.continuous) AS  
SELECT device,  
       time_bucket(INTERVAL '1 hour', time) AS bucket,  
       AVG(temperature),  
       MAX(temperature),  
       MIN(temperature)  
FROM conditions  
GROUP BY device, bucket;  
  
  
CREATE VIEW conditions_summary_daily  
WITH (timescaledb.continuous) AS  
SELECT device,  
       time_bucket(INTERVAL '1 day', time) AS bucket,  
       AVG(temperature),  
       MAX(temperature),  
       MIN(temperature)  
FROM conditions  
GROUP BY device, bucket;  

写入测试数据

INSERT INTO conditions(time, device, temperature)   
select now()+(id||' second')::interval,   
  (random()*100)::int,   
  random()*100    
  from generate_series(1,1000000) id;  

查询聚合视图

SELECT * FROM conditions_summary_daily  
WHERE device = 5  
  AND bucket >= '2023-01-01' AND bucket < '2023-01-10';  
  
  
 device |         bucket         |       avg        |       max        |        min           
--------+------------------------+------------------+------------------+--------------------  
      5 | 2023-01-05 00:00:00+00 | 52.8728757359047 | 99.9651623424143 |  0.113607617095113  
      5 | 2023-01-06 00:00:00+00 | 50.9738177677259 | 99.9353400431573 | 0.0549898017197847  
      5 | 2023-01-07 00:00:00+00 | 49.2079831483183 | 99.9868880026042 | 0.0576195307075977  
      5 | 2023-01-08 00:00:00+00 | 48.3715454505876 | 99.9165495857596 |  0.242615444585681  
      5 | 2023-01-09 00:00:00+00 | 49.0718302013499 | 99.7824223246425 | 0.0885920133441687  
(5 rows)  
SELECT * FROM conditions_summary_daily  
WHERE max - min > 1800  
  AND bucket >= '2023-01-01' AND bucket < '2023-04-01'  
ORDER BY bucket DESC, device DESC LIMIT 20;  

修改聚合视图的自动刷新延迟、保留时间窗口、手工基于时间窗口维护保留数据

ALTER VIEW conditions_summary_hourly SET (  
  timescaledb.refresh_lag = '1 hour'  
);  
  
  
ALTER VIEW conditions_summary_daily SET (  
  timescaledb.ignore_invalidation_older_than = '30 days'  
);  
  
  
SELECT drop_chunks(INTERVAL '30 days', 'conditions_summary_daily');  

修改自动聚合视图风格, 是否只查询已聚合内容、或包含未聚合内容(需实时查询基表进行计算):

ALTER VIEW conditions_summary_hourly SET (  
    timescaledb.materialized_only = false  
);  
  
ALTER VIEW conditions_summary_daily SET (  
    timescaledb.materialized_only = false  
);  

参考

https://legacy-docs.timescale.com/v1.7/main

https://legacy-docs.timescale.com/v1.7/using-timescaledb/continuous-aggregates

https://github.com/timescale/timescaledb-tune

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
存储 Cloud Native 关系型数据库
PolarDB开源:云原生数据库的架构革命
本文围绕开源核心价值、社区运营实践和技术演进路线展开。首先解读存算分离架构的三大突破,包括基于RDMA的分布式存储、计算节点扩展及存储池扩容机制,并强调与MySQL的高兼容性。其次分享阿里巴巴开源治理模式,涵盖技术决策、版本发布和贡献者成长体系,同时展示企业应用案例。最后展望技术路线图,如3.0版本的多写多读架构、智能调优引擎等特性,以及开发者生态建设举措,推荐使用PolarDB-Operator实现高效部署。
249 3
|
4月前
|
SQL 关系型数据库 分布式数据库
PolarDB开源数据库入门教程
PolarDB是阿里云推出的云原生数据库,基于PostgreSQL、MySQL和Oracle引擎构建,具备高性能、高扩展性和高可用性。其开源版采用计算与存储分离架构,支持快速弹性扩展和100%兼容PostgreSQL/MySQL。本文介绍了PolarDB的安装方法(Docker部署或源码编译)、基本使用(连接数据库、创建表等)及高级特性(计算节点扩展、存储自动扩容、并行查询等)。同时提供了性能优化建议和监控维护方法,帮助用户在生产环境中高效使用PolarDB。
1494 21
|
4月前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB开源:云原生数据库的新篇章
阿里云自研的云原生数据库PolarDB于2023年5月正式开源,采用“存储计算分离”架构,具备高性能、高可用及全面兼容性。其开源版本提供企业级数据库解决方案,支持MySQL、PostgreSQL和Oracle语法,适用于高并发OLTP、核心业务系统等场景。PolarDB通过开放治理与开发者工具构建完整生态,并展望更丰富的插件功能与AI集成,为中国云原生数据库技术发展贡献重要力量。
437 17
|
4月前
|
存储 关系型数据库 分布式数据库
PolarDB开源进阶篇:深度解析与实战优化指南
PolarDB是阿里云开源的云原生数据库,采用计算-存储分离架构,结合高性能共享存储与Parallel Raft多副本一致性协议,实现微秒级延迟和卓越性能。本文深入解析其架构设计,涵盖智能调度层、性能优化技巧(如查询优化器调优和分布式事务提升)、高可用与容灾配置、扩展功能开发指南以及监控运维体系。同时,通过电商平台优化案例展示实际应用效果,并展望未来演进方向,包括AI结合、多模数据库支持及Serverless架构发展。作为云原生数据库代表,PolarDB为开发者提供了强大支持和广阔前景。
274 16
|
7月前
|
关系型数据库 分布式数据库 数据库
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
124 1
|
2月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
4月前
|
关系型数据库 数据库 RDS
【瑶池数据库训练营及解决方案本周精选(探索PolarDB,参与RDS迁移、连接训练营)】(5.30-6.8)
本周精选聚焦数据库迁移训练营、快速连接云数据库RDS训练营及智能多模态搜索解决方案。为用户提供模拟教程与实战演练,学习RDS MySQL实例连接与数据管理技能,助力企业智能化发展。每周解锁数据库实战新场景,抓紧时间,精彩不容错过!
|
3月前
|
关系型数据库 分布式数据库 数据库
再获殊荣,阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
内存池化技术新突破,阿里云PolarDB蝉联SIGMOD最佳论文奖
|
4月前
|
Cloud Native 关系型数据库 分布式数据库
阿里云PolarDB与沃趣科技携手打造一体化数据库解决方案,助推国产数据库生态发展
阿里云瑶池数据库与沃趣科技将继续深化合作,共同推动国产数据库技术的持续创新与广泛应用,为行业生态的繁荣注入更强劲的技术动力。
阿里云PolarDB与沃趣科技携手打造一体化数据库解决方案,助推国产数据库生态发展
|
7月前
|
存储 NoSQL 关系型数据库
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
432 2

相关产品

  • 云原生数据库 PolarDB