Gradio机器学习模型快速部署工具【quickstart】翻译2

简介: Gradio机器学习模型快速部署工具【quickstart】翻译2

书接上回【Gradio机器学习模型快速部署工具【quickstart】翻译1】,讲到多输入输出,其实很简单,就是把多个组件包装到列表,inputs和outputs对应的就是2个列表,输入输出列表,仅此而已。


1.图像示例


Gradio 支持多种类型的组件,例如Image, DataFrame, Video, 或Label. 让我们尝试一个图像到图像的功能来感受一下这些!


import numpy as np
import gradio as gr
def sepia(input_img):
    sepia_filter = np.array([
        [0.393, 0.769, 0.189], 
        [0.349, 0.686, 0.168], 
        [0.272, 0.534, 0.131]
    ])
    sepia_img = input_img.dot(sepia_filter.T)
    sepia_img /= sepia_img.max()
    return sepia_img
demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
demo.launch()

image.png

使用该Image组件作为输入时,您的函数将接收一个形状为 的 NumPy 数组(width, height, 3),其中最后一个维度表示 RGB 值。我们还将以 NumPy 数组的形式返回图像。

您还可以使用关键字参数设置组件使用的数据类型type=。例如,如果您希望您的函数采用图像的文件路径而不是 NumPy 数组,则输入Image组件可以写为:


gr.Image(type="filepath", shape=...)

另请注意,我们的输入Image组件带有一个编辑按钮🖉,它允许裁剪和放大图像。以这种方式处理图像有助于揭示机器学习模型中的偏差或隐藏缺陷!

您可以在Gradio 文档中阅读更多关于许多组件以及如何使用它们的信息。


2.块:更多的灵活性和控制


Gradio 提供了两个类来构建应用程序:

1. Interface,它为创建我们迄今为止一直在讨论的演示提供了高级抽象。

2. Blocks,一种用于设计具有更灵活布局和数据流的网络应用程序的低级 API。Blocks 允许你做一些事情,比如以多个数据流和演示为特色,控制组件在页面上出现的位置,处理复杂的数据流(例如,输出可以作为其他功能的输入),以及根据用户交互更新组件的属性/可见性——仍然全部在 Python 中。如果您需要这种可定制性,请试试Blocks吧!

让我们看一个简单的例子。请注意此处的 API 与Interface.


import gradio as gr
def greet(name):
    return "Hello " + name + "!"
with gr.Blocks() as demo:
    name = gr.Textbox(label="Name")
    output = gr.Textbox(label="Output Box")
    greet_btn = gr.Button("Greet")
    greet_btn.click(fn=greet, inputs=name, outputs=output)
demo.launch()

image.png

注意事项:

  • Blocks是用一个with子句制作的,在这个子句中创建的任何组件都会自动添加到应用程序中。
  • 组件按照它们创建的顺序垂直显示在应用程序中。(稍后我们将介绍自定义布局!)
  • 创建了A Button,然后将click事件侦听器添加到此按钮。这个 API 应该看起来很熟悉!与 一样Interface,该click方法采用 Python 函数、输入组件和输出组件。


3.更复杂的 Blocks


这是一个应用程序,可让您体验Blocks:


import numpy as np
import gradio as gr
# 1.文字翻转
def flip_text(x):
    return x[::-1]
# 2.图像翻转
def flip_image(x):
    return np.fliplr(x)
with gr.Blocks() as demo:
    # 3.添加markdown组件
    gr.Markdown("Flip text or image files using this demo.")
    # 4.添加Tab
    with gr.Tab("Flip Text"):
        text_input = gr.Textbox()
        text_output = gr.Textbox()
        text_button = gr.Button("Flip")
    with gr.Tab("Flip Image"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
    # 5.添加Accordion
    with gr.Accordion("Open for More!"):
        gr.Markdown("Look at me...")
    # 6.添加2个按钮
    text_button.click(flip_text, inputs=text_input, outputs=text_output)
    image_button.click(flip_image, inputs=image_input, outputs=image_output)
demo.launch()

image.png

image.png

参考网址:gradio.app/quickstart/



目录
打赏
0
0
0
0
9
分享
相关文章
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
2248 11
阿里云PAI部署DeepSeek及调用
DeepSeek服务器繁忙?拒绝稍后再试!基于阿里云PAI实现0代码一键部署DeepSeek-V3和DeepSeek-R1大模型
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程无需编写代码,极大简化了模型应用的门槛。
181 7
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
103 20
全网首发 | PAI Model Gallery一键部署阶跃星辰Step-Video-T2V、Step-Audio-Chat模型
Step-Video-T2V 是一个最先进的 (SoTA) 文本转视频预训练模型,具有 300 亿个参数,能够生成高达 204 帧的视频;Step-Audio 则是行业内首个产品级的开源语音交互模型,通过结合 130B 参数的大语言模型,语音识别模型与语音合成模型,实现了端到端的文本、语音对话生成,能和用户自然地进行高质量对话。PAI Model Gallery 已支持阶跃星辰最新发布的 Step-Video-T2V 文生视频模型与 Step-Audio-Chat 大语言模型的一键部署,本文将详细介绍具体操作步骤。
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
93 6
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
199 6
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
311 13
机器学习算法的优化与改进:提升模型性能的策略与方法
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。

热门文章

最新文章