Gradio机器学习模型快速部署工具【quickstart】翻译2

简介: Gradio机器学习模型快速部署工具【quickstart】翻译2

书接上回【Gradio机器学习模型快速部署工具【quickstart】翻译1】,讲到多输入输出,其实很简单,就是把多个组件包装到列表,inputs和outputs对应的就是2个列表,输入输出列表,仅此而已。


1.图像示例


Gradio 支持多种类型的组件,例如Image, DataFrame, Video, 或Label. 让我们尝试一个图像到图像的功能来感受一下这些!


import numpy as np
import gradio as gr
def sepia(input_img):
    sepia_filter = np.array([
        [0.393, 0.769, 0.189], 
        [0.349, 0.686, 0.168], 
        [0.272, 0.534, 0.131]
    ])
    sepia_img = input_img.dot(sepia_filter.T)
    sepia_img /= sepia_img.max()
    return sepia_img
demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
demo.launch()

image.png

使用该Image组件作为输入时,您的函数将接收一个形状为 的 NumPy 数组(width, height, 3),其中最后一个维度表示 RGB 值。我们还将以 NumPy 数组的形式返回图像。

您还可以使用关键字参数设置组件使用的数据类型type=。例如,如果您希望您的函数采用图像的文件路径而不是 NumPy 数组,则输入Image组件可以写为:


gr.Image(type="filepath", shape=...)

另请注意,我们的输入Image组件带有一个编辑按钮🖉,它允许裁剪和放大图像。以这种方式处理图像有助于揭示机器学习模型中的偏差或隐藏缺陷!

您可以在Gradio 文档中阅读更多关于许多组件以及如何使用它们的信息。


2.块:更多的灵活性和控制


Gradio 提供了两个类来构建应用程序:

1. Interface,它为创建我们迄今为止一直在讨论的演示提供了高级抽象。

2. Blocks,一种用于设计具有更灵活布局和数据流的网络应用程序的低级 API。Blocks 允许你做一些事情,比如以多个数据流和演示为特色,控制组件在页面上出现的位置,处理复杂的数据流(例如,输出可以作为其他功能的输入),以及根据用户交互更新组件的属性/可见性——仍然全部在 Python 中。如果您需要这种可定制性,请试试Blocks吧!

让我们看一个简单的例子。请注意此处的 API 与Interface.


import gradio as gr
def greet(name):
    return "Hello " + name + "!"
with gr.Blocks() as demo:
    name = gr.Textbox(label="Name")
    output = gr.Textbox(label="Output Box")
    greet_btn = gr.Button("Greet")
    greet_btn.click(fn=greet, inputs=name, outputs=output)
demo.launch()

image.png

注意事项:

  • Blocks是用一个with子句制作的,在这个子句中创建的任何组件都会自动添加到应用程序中。
  • 组件按照它们创建的顺序垂直显示在应用程序中。(稍后我们将介绍自定义布局!)
  • 创建了A Button,然后将click事件侦听器添加到此按钮。这个 API 应该看起来很熟悉!与 一样Interface,该click方法采用 Python 函数、输入组件和输出组件。


3.更复杂的 Blocks


这是一个应用程序,可让您体验Blocks:


import numpy as np
import gradio as gr
# 1.文字翻转
def flip_text(x):
    return x[::-1]
# 2.图像翻转
def flip_image(x):
    return np.fliplr(x)
with gr.Blocks() as demo:
    # 3.添加markdown组件
    gr.Markdown("Flip text or image files using this demo.")
    # 4.添加Tab
    with gr.Tab("Flip Text"):
        text_input = gr.Textbox()
        text_output = gr.Textbox()
        text_button = gr.Button("Flip")
    with gr.Tab("Flip Image"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Image()
        image_button = gr.Button("Flip")
    # 5.添加Accordion
    with gr.Accordion("Open for More!"):
        gr.Markdown("Look at me...")
    # 6.添加2个按钮
    text_button.click(flip_text, inputs=text_input, outputs=text_output)
    image_button.click(flip_image, inputs=image_input, outputs=image_output)
demo.launch()

image.png

image.png

参考网址:gradio.app/quickstart/



目录
相关文章
|
1天前
|
机器学习/深度学习 数据挖掘 定位技术
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
85 6
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
103 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
9月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
9月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
164 2
|
9月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。