YOLOv8官方支持多目标跟踪 | ByteTrack、BoT-SORT都已加入YOLOv8官方

简介: YOLOv8官方支持多目标跟踪 | ByteTrack、BoT-SORT都已加入YOLOv8官方

模板跟踪是一项任务,涉及识别模板的位置和类别,然后为视频流中的检测分配唯一ID。跟踪器的输出与添加了模板ID的检测相同。


YOLOv8加入了哪些检测器?


以下跟踪算法已经实现,可以通过 tracker=tracker_type.yaml实现:

  • BoT-SORT - botsort.yaml
  • ByteTrack - bytetrack.yaml

默认跟踪器为:BoT-SORT


Tracking


将训练好的 YOLOv8n/YOLOv8n-seg model加入到不同的跟踪器之中里进行视频流的检测和跟踪。

示例1

from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt")  # load an official detection model
model = YOLO("yolov8n-seg.pt")  # load an official segmentation model
model = YOLO("path/to/best.pt")  # load a custom model
# Track with the model
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True) 
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")

命令行如下

yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc"  # official detection model
yolo track model=yolov8n-seg.pt source=...   # official segmentation model
yolo track model=path/to/best.pt source=...  # custom model
yolo track model=path/to/best.pt  tracker="bytetrack.yaml" # bytetrack tracker

与上述用法一样,YOLOv8支持用于跟踪的检测和分割模型,只需加载相应的(检测或分割)模型即可。


配置


跟踪

跟踪与预测共享配置,即“conf”、“iou”、“show”。更多配置请参考 predict page。

示例1

from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", conf=0.3, iou=0.5, show=True)

命令行如下

yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" conf=0.3, iou=0.5 show

跟踪器

YOLOv8还支持使用修改的跟踪器配置文件,只需复制一个配置文件即可,比如复制 custom_tracker.yaml ultralytics/tracker/cfg并修改配置(比如 tracker_type)。

示例2

from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", tracker='custom_tracker.yaml')

命令行如下

yolo track model=yolov8n.pt source="https://youtu.be/Zgi9g1ksQHc" tracker='custom_tracker.yaml'

具体可以参考ultralytics/tracker/cfg。


参考


[1].https://github.com/ultralytics/ultralytics.

相关文章
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
2939 0
|
存储 XML JSON
开集目标检测-标签提示目标检测大模型(吊打YOLO系列-自动化检测标注)
开集目标检测-标签提示目标检测大模型(吊打YOLO系列-自动化检测标注)
|
存储 人工智能 算法
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI
|
11月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
2164 8
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
21990 3
|
传感器 人工智能 算法
AI计算机视觉笔记二十七:YOLOV8实现目标追踪
本文介绍了使用YOLOv8实现人员检测与追踪的方法。通过为每个人员分配唯一ID,实现持续追踪,并可统计人数,适用于小区或办公楼出入管理。首先解释了目标检测与追踪的区别,接着详细描述了使用匈牙利算法和卡尔曼滤波实现目标关联的过程。文章提供了基于IOU实现追踪的具体步骤,包括环境搭建、模型加载及追踪逻辑实现。通过示例代码展示了如何使用YOLOv8进行实时视频处理,并实现人员追踪功能。测试结果显示,该方法在实际场景中具有较好的应用潜力。
2041 4
|
前端开发 计算机视觉 Python
flask+python 实时视频流输出到前台
该文章介绍了如何使用Flask和Python实现实时视频流输出到网页前端,包括后端通过OpenCV捕获摄像头视频流、处理并编码为JPEG格式,然后以HTTP响应的形式发送给前端显示的完整示例代码和运行效果。
flask+python 实时视频流输出到前台
|
人工智能 监控 算法
AI计算机视觉笔记二十 八:基于YOLOv8实例分割的DeepSORT多目标跟踪
本文介绍了YOLOv8实例分割与DeepSORT视觉跟踪算法的结合应用,通过YOLOv8进行目标检测分割,并利用DeepSORT实现特征跟踪,在复杂环境中保持目标跟踪的准确性与稳定性。该技术广泛应用于安全监控、无人驾驶等领域。文章提供了环境搭建、代码下载及测试步骤,并附有详细代码示例。
1583 1
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
算法 计算机视觉
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解