白话Elasticsearch41-深入聚合数据分析之案例实战__过滤+聚合:统计价格大于2000的电视平均价格

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 白话Elasticsearch41-深入聚合数据分析之案例实战__过滤+聚合:统计价格大于2000的电视平均价格

20190806092132811.jpg

概述

继续跟中华石杉老师学习ES,第41篇

课程地址https://www.roncoo.com/view/55


案例

需求: 统计价格大于2000的电视的平均价格

原始数据:


20190823153138707.png


不多说了,很简单,只需要在查询的时候过滤下即可

GET /tvs/sales/_search
{
  "query": {
    "range": {
      "price": {
        "gte": "2000"
      }
    }
  },
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "price"
      }
    }
  },
  "size": 0
}


返回结果:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "avg_price": {
      "value": 3500
    }
  }
}


我们把原始数据也返回(去掉 "size": 0),来校验下,是否正确。

GET /tvs/sales/_search
{
  "query": {
    "range": {
      "price": {
        "gte": "2000"
      }
    }
  },
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}


返回:

{
  "took": 27,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 1,
    "hits": [
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "QzGrtGwBCp8vhw_gCmb9",
        "_score": 1,
        "_source": {
          "price": 2000,
          "color": "红色",
          "brand": "长虹",
          "sold_date": "2016-11-05"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "PzGrtGwBCp8vhw_gCmb9",
        "_score": 1,
        "_source": {
          "price": 2000,
          "color": "红色",
          "brand": "长虹",
          "sold_date": "2016-11-05"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "QDGrtGwBCp8vhw_gCmb9",
        "_score": 1,
        "_source": {
          "price": 3000,
          "color": "绿色",
          "brand": "小米",
          "sold_date": "2016-05-18"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "RDGrtGwBCp8vhw_gCmb9",
        "_score": 1,
        "_source": {
          "price": 8000,
          "color": "红色",
          "brand": "三星",
          "sold_date": "2017-01-01"
        }
      },
      {
        "_index": "tvs",
        "_type": "sales",
        "_id": "RTGrtGwBCp8vhw_gCmb9",
        "_score": 1,
        "_source": {
          "price": 2500,
          "color": "蓝色",
          "brand": "小米",
          "sold_date": "2017-02-12"
        }
      }
    ]
  },
  "aggregations": {
    "avg_price": {
      "value": 3500
    }
  }
}


比对下原始数据,可知正确。

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
2月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
833 6
|
8月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:<https://github.com/awesimon/elasticsearch-mcp>,欢迎体验与反馈。
2041 1
|
12月前
|
机器学习/深度学习 数据采集 DataWorks
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
|
存储 数据可视化 数据挖掘
使用Elasticsearch进行实时数据分析与预测
【8月更文第28天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,它能够实时地存储、检索以及分析大规模的数据集。结合 Logstash 和 Kibana,它们共同构成了 Elastic Stack,这是一套强大的工具组合,适用于收集、存储、分析和可视化数据。
577 0
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
841 4
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
250 2
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
347 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
1114 4
数据分析的 10 个最佳 Python 库
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
146 3