【优秀python案例】基于python爬虫的深圳房价数据分析与可视化实现

简介: 本文通过Python爬虫技术从链家网站爬取深圳二手房房价数据,并进行数据清洗、分析和可视化,提供了房价走势、区域房价比较及房屋特征等信息,旨在帮助购房者更清晰地了解市场并做出明智决策。

现如今,房价问题一直处于风口浪尖,房价的上涨抑或下跌都牵动着整个社会的利益,即便是政府出台各种政策方针也只能是暂时抑制楼市的涨势,对于需要买房的人来说,除了关注这些变化和政策外,还有一个非常头疼的问题,在哪里买房,房价怎样。一般的人会不停花大量精力逛链家、安居客等房地产网站,借助他们展示的内容进行筛选,但因地区众多,各个地段、房价差异的对比以及入手时机的把握,都得自己去一个个查阅与分析,非常麻烦。倘若可以通过数据的爬取,再按照自己希望的维度统计、分析与展示,会让数据变得清晰明了。本项目旨在提取并展示数据,为刚需购房者提供有用信息。

1 爬取房价数据

1.1 网页数据爬取

爬取某个网页的房价要查看那个网页的信息,我们爬取链家网站上的深圳二手房,打开链家网页:深圳深圳二手房房源_深圳深圳二手房出售|买卖|交易信息(深圳链家)。用F12以页面中元素进行检查

分析html代码,了解页面结构,然后获取你需要爬取内容在html代码中的路径,再稍微做些整理,就可以得到你想要爬取的内容,主要用的是beautifulsoup。我们要爬取深圳各行政区的房价数据,首先在Python里面编辑行政列表。

在爬取数据之前,我们需要设置请求头headers信息。包括User-Agent和Cookie。有些网站设置了反爬,因此我们需要让爬虫更好的模仿人类的操作。设置User-Agent可以让网站确定是人们在操作,设置Cookie是为了让浏览器保留我们操作后的信息,增加爬虫几率。具体的爬虫代码如下:

1.2 数据展示与处理

爬取网页中每个房价的字段信息包括位置,总价,每平米价格,面积,几室几厅等等。

爬取的数据,保存在python文件,然后对数据进行展示

因为直接爬取的数据,不能用来分析,还需要对数据进行简单处理,比如,具体信息这个字段包含很多详细的信息,所以要对这个数据信息进行提取,处理后的数据如下图所示。

2. 数据分析与可视化

2.1 数据变量

查看数据中每个变量的类型,如下图所示。

查看是否有缺失值,代码如下图所示,可以看到数据中存在缺失数据,我们对缺失的数据用0值填充。

2.2 变量分析与可视化

在数据分析之前,我们导入必要的库函数,如pandas numpy和matplotlib等工具。

接下来对变量进行查看,对部分数值数据进行展示。

对爬取的数据部分特征进行分析,首先对房子每平米的价格分析,可以看到

均价是在59598元每平方米,最小的价格是10000每平米

对这个数据画图展示,如下图所示,大部分房子的均价在60000元每平米左右。

对每个行政区的房子均价进行分析,可以看到,福田区的房价是在最高的,南山是第二高,盐田区是第三高的

对每套房屋的总价进行分析,代码如下图所示,可以看到深圳市每套房的均价是626万,最高可达6800多万,通过绘图可以看到,每套房均价在600万和700万附近。

对每个地区的房屋总价进行分析,可以看到南山区的每套房子是最高的,盐田区靠近郊区,所以房价排名最后。

对房屋的建筑时间进行分析,可以看到最早的房子是1981年建造的,最晚是今年2022年建筑的。绝大部分房子基本在2005年建成。

对房屋的面积进行分析,全市的房子的面积在100平方左右。

对深圳市各个位置的房子出售量进行分析,可以看到南山中心的出售房子是最多的,其次是沙头角、莲塘、蛇口等等地区,如果需要看房可以多去这些地方。

对房子的样式进行分析,绝大部分是塔楼结合或者是塔楼的样式,个别还有别墅出售的,但是数量很少。

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
33 2
Python实用记录(三):通过netron可视化模型
|
11天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
1月前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
189 0
|
1月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
91 0
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
49 0
|
6月前
|
数据采集 JSON JavaScript
Python爬虫案例:抓取猫眼电影排行榜
python爬取猫眼电影排行榜数据分析,实战。(正则表达式,xpath,beautifulsoup)【2月更文挑战第11天】
261 2
Python爬虫案例:抓取猫眼电影排行榜
|
5月前
|
数据采集 前端开发 Java
Python简单爬虫案例
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。
|
5月前
|
数据采集 前端开发 Java
Python简单爬虫案例
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。