白话Elasticsearch38-深入聚合数据分析之案例实战 下钻分析之统计每季度每个品牌的销售额

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch38-深入聚合数据分析之案例实战 下钻分析之统计每季度每个品牌的销售额

20190806092132811.jpg


概述

继续跟中华石杉老师学习ES,第38篇

课程地址https://www.roncoo.com/view/55


案例

需求: 统计每季度每个品牌的销售额

原始数据:


20190823153138707.png

Step1. 先按照季度进行bucket分组

首先按照季度 bucket分组 ,使用 date_histogram , 季度interval->quarter

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",
        "min_doc_count": 0,
        "format": "yyyy-MM-dd",
        "extended_bounds": {
          "min": "2016-04-01",
          "max": "2017-03-31"
        }
      }
    }
  }
}


返回:


20190823155926605.png


Step2.然后对每个季度bucket中,下钻 ,按照品牌继续分组,对每个品牌求销售额

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",
        "min_doc_count": 0,
        "format": "yyyy-MM-dd",
        "extended_bounds": {
          "min": "2016-04-01",
          "max": "2017-03-31"
        }
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}


返回:

{
  "took": 9,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_sold_date": {
      "buckets": [
        {
          "key_as_string": "2016-04-01",
          "key": 1459468800000,
          "doc_count": 1,
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "小米",
                "doc_count": 1,
                "brand_sum_price": {
                  "value": 3000
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2016-07-01",
          "key": 1467331200000,
          "doc_count": 2,
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 2,
                "brand_sum_price": {
                  "value": 2700
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2016-10-01",
          "key": 1475280000000,
          "doc_count": 3,
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "长虹",
                "doc_count": 3,
                "brand_sum_price": {
                  "value": 5000
                }
              }
            ]
          }
        },
        {
          "key_as_string": "2017-01-01",
          "key": 1483228800000,
          "doc_count": 2,
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "三星",
                "doc_count": 1,
                "brand_sum_price": {
                  "value": 8000
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "brand_sum_price": {
                  "value": 2500
                }
              }
            ]
          }
        }
      ]
    }
  }
}


找个季度来验证下结果

原始数据:


20190823153138707.png

计算结果中的一部分:



20190823160442372.png

Step3. 其实也还可以计算每个季度所有品牌的 总销售额

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",
        "min_doc_count": 0,
        "format": "yyyy-MM-dd",
        "extended_bounds": {
          "min": "2016-04-01",
          "max": "2017-03-31"
        }
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        },
        "total_sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}


返回:

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",
        "min_doc_count": 0,
        "format": "yyyy-MM-dd",
        "extended_bounds": {
          "min": "2016-04-01",
          "max": "2017-03-31"
        }
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        },
        "total_sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}


继续用2017第一季度来验证下


20190823160701372.png


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
83 5
|
1月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
223 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
53 1
|
2月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
116 1
|
2月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
72 1
|
2月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
142 0
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
63 0
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
73 4
数据分析的 10 个最佳 Python 库
|
4月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
91 2
下一篇
DataWorks