7 Papers & Radios | BERT上下文长度达200万token;华人团队通用分割模型SEEM

简介: 7 Papers & Radios | BERT上下文长度达200万token;华人团队通用分割模型SEEM


本周重要论文包括威斯康星大学麦迪逊分校、微软、港科大华人研究者提出的基于 prompt 的新型交互模型 SEEM,以及 40 多位学者联合发布的基础模型工具学习综述和开源 BMTools 平台。


目录:

  1. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
  2. A Cookbook of Self-Supervised Learning
  3. Tool Learning with Foundation Models
  4. Scaling Transformer to 1M tokens and beyond with RMT
  5. Segment Everything Everywhere All at Once
  6. Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators
  7. Collaboration Helps Camera Overtake LiDAR in 3D Detection
  8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)


论文 1:FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness


摘要:过去两年,斯坦福大学 Hazy Research 实验室一直在从事一项重要的工作:增加序列长度。他们有一种观点:更长的序列将开启机器学习基础模型的新时代 —— 模型可以从更长的上下文、多种媒体源、复杂的演示等中学习。

目前,这项研究已经取得了新进展。Hazy Research 实验室的 Tri Dao 和 Dan Fu 主导了 FlashAttention 算法的研究和推广,他们证明了 32k 的序列长度是可能的,且在当前这个基础模型时代将得到广泛应用(OpenAI、Microsoft、NVIDIA 和其他公司的模型都在使用 FlashAttention 算法)。



推荐:想把半本《红楼梦》搬进 ChatGPT 输入框?先把这个问题解决掉。

论文 2:A Cookbook of Self-Supervised Learning


摘要:近日,LeCun 介绍了他和 Meta 人工智能研究院研究员、研究经理田渊栋等人共同撰写的一份「Cookbook」(非常实用、可操作性强、就像一本菜谱一样的论文)。这本 Cookbook 总共 70 页,涵盖了自监督学习的定义、重要性、起源、家族、训练部署方法、扩展方法等方面知识,是一份不可多得的学习材料。「如果你想研究自监督学习,那最好看看这本书。」田渊栋补充说。



推荐:LeCun、田渊栋参与撰写,70 页「自监督学习」大全来了。

论文 3:Tool Learning with Foundation Models


摘要:近期,来自清华大学、中国人民大学、北京邮电大学、UIUC、NYU、CMU 等高校的研究人员联合知乎、面壁智能公司探索基础模型调用外部工具的课题,联合发表了一篇 74 页的基础模型工具学习综述论文,发布开源工具学习平台。该团队提出了基础模型工具学习的概念,系统性地整理和阐述了其技术框架,同时展示了未来可能面临的机遇和挑战。这项研究对于了解基础模型工具学习的最新进展及其未来发展趋势具有重要价值。

工具学习整体框架呈现了人类用户和四个核心成分:工具集、控制器、感知器、环境。



推荐:40 多位学者联合发布基础模型工具学习综述,开源 BMTools 平台。

论文 4:Scaling Transformer to 1M tokens and beyond with RMT


摘要:前几天,一篇来自开源对话 AI 技术栈 DeepPavlov 等机构的研究表明:通过采用一种名为 Recurrent Memory Transformer(RMT)的架构,他们可以将 BERT 模型的有效上下文长度增加到 200 万个 token(按照 OpenAI 的计算方式,大约相当于 3200 页文本),同时保持了较高的记忆检索准确性(注:Recurrent Memory Transformer 是 Aydar Bulatov 等人在 NeurIPS 2022 的一篇论文中提出的方法)。新方法允许存储和处理局部和全局信息,并通过使用 recurrence 使信息在输入序列的各 segment 之间流动。



推荐:真・量子速读:突破 GPT-4 一次只能理解 50 页文本限制,新研究扩展到百万 token。

论文 5:Segment Everything Everywhere All at Once


摘要:最近,一篇「一次性分割一切」的新论文再次引起关注。在该论文中,来自威斯康星大学麦迪逊分校、微软、香港科技大学的几位华人研究者提出了一种基于 prompt 的新型交互模型 SEEM。SEEM 能够根据用户给出的各种模态的输入(包括文本、图像、涂鸦等等),一次性分割图像或视频中的所有内容,并识别出物体类别。该项目已经开源,并提供了试玩地址供大家体验。下图中展示了轻松分割出视频中移动的物体。



推荐:一次性分割一切,比 SAM 更强,华人团队的通用分割模型 SEEM 来了

论文 6:Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators


摘要:在谷歌这篇论文中,研究人员探讨了如何通过最新的大规模实验解决这个问题,他们在两年内部署了一支由 23 个支持 RL 的机器人组成的群组,用于在谷歌办公楼中进行垃圾分类和回收。使用的机器人系统将来自真实世界数据的可扩展深度强化学习与来自模拟训练的引导和辅助对象感知输入相结合,以提高泛化能力,同时保留端到端训练优势,通过对 240 个垃圾站进行 4800 次评估试验来验证。在现实世界中,机器人会遇到各种独特的情况,比如以下真实办公楼的例子:



推荐:耗时两年,谷歌用强化学习打造 23 个机器人帮助垃圾分类。

论文 7:Collaboration Helps Camera Overtake LiDAR in 3D Detection


摘要:摄像头能否实现激光雷达的检测效果,以更低成本实现自动驾驶感知?在最新的 CVPR2023 论文中,来自上海交通大学、加州大学洛杉矶分校、以及上海人工智能实验室的研究者提出了纯视觉协作探测方法(CoCa3D),通过让多个基于纯视觉的智能车高效协作,在 3D 目标探测效果上,接近甚至超越基于激光雷达的智能车。下图为数据集 CoPerception-UAVs + 和 OPV2V + 仿真环境。



推荐:多车协作让纯视觉 3D 目标探测媲美激光雷达。

相关文章
|
7月前
|
机器学习/深度学习 人工智能 开发工具
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人员公开分享和测试他们所训练的模型。 本次分享如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face。
如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face
|
7月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
117 0
|
7月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
77 0
|
2月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
92 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
2月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
2月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
225 0
|
3月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
96 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
4月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
82 1
|
4月前
|
算法 异构计算
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决
自研分布式训练框架EPL问题之帮助加速Bert Large模型的训练如何解决

热门文章

最新文章