《Apache Flink 案例集(2022版)》——4.云原生——斗鱼-Apache Flink 在斗鱼的应用与实践(下)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——4.云原生——斗鱼-Apache Flink 在斗鱼的应用与实践(下)

《Apache Flink 案例集(2022版)》——4.云原生——斗鱼-Apache Flink 在斗鱼的应用与实践(上) https://developer.aliyun.com/article/1228038



生产实践

搭建平台的过程中,斗鱼也遇到了不少的挑战。  


第一个挑战是 Flink on K8s 集群的部署资源问题。方案上斗鱼使用 Standalone Kubernetes 部署,实际是在 K8s 的集群中,创建了两个实例组。一个实例组用来运行 JM 进程,另一个实例组用来运行 TM 进程。两个实例组之间,通过设置 HA 的集群 id 相同来实现绑定。  


JobManager实例组运行多个Pod时,除其中一个作为Master节点外,其他的Pod都将以StandBy的身份运行;


TaskManager实例组运行多个Pod时,每一个Pod都将注册到JobManager上,作为一个作业执行器存在。


image.png

为了使资源充分隔离,依托于 K8s 的能力,生产部署时斗鱼采取一个作业创建一个 Flink 集群的方式。由于K8s创建一个Pod时,需要指定 CPU 和内存的设置,而 Flink 集群启动的时候需要在Flink配置文件指定JobManager和TaskManager的资源配置,因此在这个方案中遇到的挑战就是如何统一设置 K8s 实例资源与 Flink 集群资源。  


为了解决这个问题,斗鱼改造了 Flink 镜像启动脚本 entrypoint,在脚本中增加了两个操作:  


第一是拉取作业定义,以获取作业的运行配置;


第二是替换 flink-conf 文件 memory size 配置。


image.png


值得注意的是,在Flink社区最新的Native Kubenates方案中这个问题已经通过参数化配置解决了。


image.png


平台遇到的第二个挑战是如何去监控每个作业的运行状态。方案上,斗鱼将每个作业抽象成一条消息,存放在基于 ZK 开发的消息队列中。并且在消息队列虚化了 5 个状态,Accept、Running、Failed、Cancel 以及 Finish。  


每个状态都有一个独立的线程池去监控消费。比如 Running 状态,线程池从消息队列中获取一条作业消息,从中解析 Flink 集群信息,获取 FlinkUI 域名,通过 K8s 的 Nginx Ingress,使用域名去访问 Flink JM Pod,从而获取运行作业的状态。当获取作业状态还是 Running 时,将重入队到队尾,否则将移动到对应状态队列下。


image.png


平台遇到的第三个挑战是如何读取Hive表以及如何使用Hive UDF。斗鱼将一个 FlinkSQL 的提交拆分成三个部分:作业组装、上下文初始化和 SQL 执行。其中作业组装实现了两种方式:  


第一个是 SDK GET,通过 SDK 封装的方法,请求平台的服务层,去获取作业定义;


第二个是 FILE GET,直接读取当前机器,指定路径下的 SQL 文件,生成作业定义。第二个方式主要是方便本地不依赖平台服务,可快速调试引擎。


上下文初始化部分也分为两个过程:  


一个是调优参数的设置,类似常用HiveSQL的Set命令


另一个是 Catalog初始化,Flink集群与Hive的集成就是在这个环节实现的  


以Hive为例,在Catalog注入之前,平台元数据管理模块有一个Catalog初始化的过程,预先将 Catalog 的创建语句存储起来。当一个Flink作业提交时,选择需要注入的Catalog,创建Catalog并注册到Flink的上下文中,从而实现Catalog的元素注入。


image.png


随着任务的增加,对于新手来说,在平台上开发 Flink 作业,从 SQL 编写到上线,往往需要改写数十个版本。缺少快速试错的能力是平台面临的第四个挑战,因此斗鱼设计开发了实时监控、实时调试功能。  


在架构方面,斗鱼引入了 Flink Gateway Server 对 Flink 集群接口二次分装。包含语法校验、SQL 提交、SQL 状态检查、SQL 停止、SQL mock 等功能。将 Flink 集群和网关服务的日志统一收集。通过预启动 Flink 集群,缩短作业启动时间,达到快速调试的能力。  


实时调试主要分为四个步骤,即 SQL 解析、规则校验、执行计划,和物理执行。SQL mock 就是改写了原有的 SQL 解析过程。根据 SQL 解析后得到 Node 数,分析 SQL 的血缘关系,去判断 Source 来源表和 Sink 目的表。动态的将 Source 表改写为 dataGen 的数据源,和 Sink 表改写成 console 的数据源。动态修改 Source 和 Sink 表的配置实现数据源mock的好处是线上开发 SQL 可直接用于调试,不需要修改,并且也不用担心会产生脏数据,可快速验证 SQL 逻辑是否符合预期。


image.png


平台面临的最后一个挑战是Flink作业的监控告警。斗鱼使用自定义Metrics Reporter,将监控指标上报到Kafka集群,继而使用Flink任务去消费Kafka里的Metrics信息,完成如聚合、补充链路维度等操作,处理后的数据再推送到 Push Gateway,写入Prometheus中。最后监控大盘基于Grafana绘制。斗鱼的监控大盘分为资源监控,稳定性监控,Kafka 监控和 CPU 内存监控。



未来规划

Flink 让实时计算更加简单,斗鱼在搭建实时计算平台过程中也并非一帆风顺。对于实时计算平台未来的发展,斗鱼有三个展望: 、


第一个是 Flink 的动态扩缩容,实现平台自动化调整 Flink 作业资源,解决业务数据突增引起的问题;


第二个是简化实时数仓开发模型,降低实时数仓开发门槛,在企业内将实时数仓真正大规模推广使用; 最后一个是完善实时数据质量监控体系,实现实时数据质量可验证与可追溯。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
Java 网络安全 Apache
SshClient应用指南:使用org.apache.sshd库在服务器中执行命令。
总结起来,Apache SSHD库是一个强大的工具,甚至可以用于创建你自己的SSH Server。当你需要在服务器中执行命令时,这无疑是非常有用的。希望这个指南能对你有所帮助,并祝你在使用Apache SSHD库中有一个愉快的旅程!
357 29
|
6月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
765 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
5月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
326 12
|
6月前
|
存储 运维 监控
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
本文总结了阿里妈妈数据技术专家陈亮在Flink Forward Asia 2024大会上的分享,围绕广告业务背景、架构设计及湖仓方案演进展开。内容涵盖广告生态运作、实时数仓挑战与优化,以及基于Paimon的湖仓方案优势。通过分层设计与技术优化,实现业务交付周期缩短30%以上,资源开销降低40%,并大幅提升系统稳定性和运营效率。文章还介绍了阿里云实时计算Flink版的免费试用活动,助力企业探索实时计算与湖仓一体化解决方案。
782 3
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
|
6月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
262 6
|
6月前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
12月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3174 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多