《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(上)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(上)

1. 查询流程和执行计划

 

SQL语言完成用户和系统内部存储数据之间的交互。在执行阶段,AnalyticDB MySQL版中的查询,会首先被切分为多个Stage来执行,一个Stage就是执行计划中某一部分的物理实体。


image.png

 

在AnalyticDB MySQL架构中有三层:接入层、计算层、存储层,是计算存储分离架构。一条SQL语句执行过程,首先会进入接入层,经过解析器完成语句的解析生成执行计划,优化器对执行计划进行优化,形成逻辑执行计划。

 

分组聚合查询的处理流程,Controller节点会把查询的逻辑执行计划Plan分片下发到执行计划任务的各个节点上。

 

Stage2由4个Task组成,并行执行数据的扫描、过滤以及局部聚合等操作。

Stage1由2个Task执行,并行执行最终的聚合操作。

Stage0由1个Task执行,负责汇总Stage1的2个Task生成的最终聚合结果。

 

2. 算子

 

一个算子负责完成一个基本的数据处理逻辑,一组算子按照执行计划完成数据的一组处理规则,参数名称与功能如下:

 

Aggregation:通过sum()、count()、avg()等函数对数据进行聚合或分组聚合操作。

DistinctLimit:对应SQL语句中的DISTINCT LIMIT操作。

Filter:使用存储层数据的索引进行过滤。存储层数据没有索引,需要在计算层使用Filter算子进行过滤。

Join:对应SQL语句中的Join操作。

Project:对应SQL语句中对特定字段的投影操作,例如case when then控制流、concat()函数等。

StageOutput:用于将当前Stage处理后的数据通过网络传输到下游Stage的节点。

Sort:应SQL语句中ORDER BY子句的操作,执行ORDER BY字段的排序。

TableScan:用于从数据源读取数据,如果需要过滤数据,那么数据过滤由底层数据源使用索引高效完成。

TopN:对应SQL语句中的ORDER BY LIMIT m,n查询。

 

 

3. 影响查询性能的因素

 

影响查询性能的因素有:集群规格、节点数量、数据分布特征、数据量大小、查询并发度、查询复杂度。

 

1) 集群规格

 

不同集群规格的CPU核数、内存大小和数据存储介质等属性不同,处理子任务的能力也就不同,需要结合业务查询特征来选择集群规格

以Join或分组聚合为主的业务查询会消耗较多的CPU和内存资源

扫描数据和简单分组聚合操作的查询会消耗较多的磁盘I/O资源。

 

2) 节点数量

 

AnalyticDB MySQL版使用了分布式数据处理架构,一条查询会被分解成多个Stage在不同的节点上并行执行。所以如果集群中的节点数量越多,AnalyticDB MySQL版处理查询的能力也会越强。用户可以根据实际的业务需求来决定集群节点的购买数量,更多详情,请参见创建集群。

https://help.aliyun.com/document_detail/122234.html

 

3) 数据分布特征

 

由于使用了分布式数据处理架构,具备将一条查询分解到多个节点上并行执行的能力

充分利用多节点来并行处理查询,还取决于数据在存储节点上的分布特征

如果数据能够均匀分布在存储节点上,多个子任务在处理数据时,就能几乎同时结束任务

数据分布不均匀,子任务在处理数据时会存在时间上的长尾,从而影响最终的查询效果。

 

4) 数据量大小

 

在处理查询时,通常不会将处理过程中的临时结果暂时写到磁盘里,而是尽量在内存中将所有数据处理掉。

如果查询需要处理的数据量较大,就可能会长时间占用大量的资源,导致整体查询效率降低,进而影响最终的查询效果。

表存储的数据量较大,在执行索引过滤、明细数据读取等操作时会出现争抢磁盘I/O资源,导致查询变慢。

 

5) 查询并发度

 

能同时处理的查询数量也会存在上限。如果查询的并发度过高,集群节点资源已到达瓶颈,那么后台的查询就会出现较长时间的排队,影响整体查询效果。

 

6) 查询复杂度

 

查询的复杂度不同造成的压力也不同

如果查询中过滤条件过于复杂,会在数据过滤时对存储节点造成一定压力

如果查询中Join算子过多,数据可能需要在不同节点间进行多次的网络传输,造成网络阻塞

如果查询中分组字段过多,也会占用较多的内存资源。

 

 

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(下)https://developer.aliyun.com/article/1222968?groupCode=certification

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
Kubernetes Cloud Native 安全
云原生机密计算新范式 PeerPods技术方案在阿里云上的落地和实践
PeerPods 技术价值已在阿里云实际场景中深度落地。
|
28天前
|
消息中间件 人工智能 监控
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
|
2月前
|
消息中间件 人工智能 监控
【云故事探索】NO.15:阿里云云原生加速鸣鸣很忙数字化
鸣鸣很忙集团作为中国最大休闲食品饮料连锁零售商,通过数字化与云原生技术实现快速扩张,4年完成其他企业10年的数字化进程。其采用阿里云全栈云原生方案,实现弹性扩容、智能补货、模块化开店等创新实践,支撑日均超430万交易数据稳定运行。未来将深化AI应用,推动供应链智能化与业务全面升级。
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。
|
4月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
4月前
|
运维 Cloud Native 应用服务中间件
阿里云微服务引擎 MSE 及 API 网关 2025 年 4 月产品动态
阿里云微服务引擎 MSE 面向业界主流开源微服务项目, 提供注册配置中心和分布式协调(原生支持 Nacos/ZooKeeper/Eureka )、云原生网关(原生支持Higress/Nginx/Envoy,遵循Ingress标准)、微服务治理(原生支持 Spring Cloud/Dubbo/Sentinel,遵循 OpenSergo 服务治理规范)能力。API 网关 (API Gateway),提供 APl 托管服务,覆盖设计、开发、测试、发布、售卖、运维监测、安全管控、下线等 API 生命周期阶段。帮助您快速构建以 API 为核心的系统架构.满足新技术引入、系统集成、业务中台等诸多场景需要
阿里云微服务引擎 MSE 及 API 网关 2025 年 4 月产品动态
|
5月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
207 6
|
5月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
307 12
|
12月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
390 13