BloombergGPT: 首个金融垂直领域大语言模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: NLP 在金融技术领域的应用广泛且复杂,主要应用场景包括情感分析、命名实体识别到问答等。大语言模型 (LLM) 已被证明可以有效处理上述任务;但是,鲜少没有报道过有专门针对金融领域的文献。本作中,我们展示了 BloombergGPT 这个拥有 500 亿参数的语言模型,它采用大量金融数据训练而来。我们基于 Bloomberg 大量的数据源构建了一个 3630 亿个token数据集,这可能是迄今为止最大的特定领域数据集,并增加了来自通用数据集的 3450 亿个token。

BloombergGPT: 首个金融垂直领域大语言模型

Bloomberg 刚刚发布了一篇研究论文,详细介绍了他们最新的突破性技术 BloombergGPT。BloombergGPT是一个大型生成式人工智能模型,专门使用大量金融数据进行了训练,以支持金融行业自然语言处理 (NLP) 任务。

随着ChatGPT的发布,人工智能取得了长足进步。但金融领域相当复杂且独特的领域,它往往受着严厉的合规监管,对事实正确性要求极高。这就是 BloombergGPT 诞生的原因——它是第一个专门为金融行业设计的大型语言模型。该模型将帮助Bloomberg在内的众多金融企业改进现有的金融 NLP 任务,如情绪分析、命名实体识别、新闻分类和问答等。 此外,Bloomberg计划将来将BloombergGPT嵌入自家终端中,以利用Bloomberg终端上可用的大量数据更好地为客户服务。

本文将对BloombergGPT做一个摘要性解读

92600afc3559a9c618ca599c10b8b3a1.gif

论文摘要

NLP 在金融技术领域的应用广泛且复杂,主要应用场景包括情感分析、命名实体识别到问答等。 大语言模型 (LLM) 已被证明可以有效处理上述任务;但是,鲜少没有报道过有专门针对金融领域的文献。本作中,我们展示了 BloombergGPT 这个拥有 500 亿参数的语言模型,它采用大量金融数据训练而来。我们基于 Bloomberg 大量的数据源构建了一个 3630 亿个token数据集,这可能是迄今为止最大的特定领域数据集,并增加了来自通用数据集的 3450 亿个token。我们在标准 LLM 基准、开放金融基准和一套最能准确反映我们预期用途的内部基准上验证了 BloombergGPT。我们的混合数据集训练得到的模型表现出在不牺牲一般 LLM 基准测试性能的情况下,在金融任务上的性能明显优于现有模型。此外,我们还解释了我们的建模选择、训练过程和评估方法。 下一步,我们计划发布训练日志,详细说明我们在训练 BloombergGPT 方面的经验。

数据来源

十多年来,Bloomberg一直是人工智能、机器学习和金融 NLP 领域的领导者。他们开发了一种混合方法,将金融数据与通用数据集相结合,从而训练出一个既能在通用 LLM 基准测试中表现出色,同时又能输出一流的金融相关结果的模型。

为了开发 BloombergGPT,机器学习产品和研究小组与 AI 工程团队合作创建了(可能是)迄今为止最大的特定领域数据集。 他们利用Bloomberg现有的数据创建、收集和资源工具,利用其海量的金融数据文档创建了一个由英文金融文件组成的 3630 亿token的综合数据集。 然后,他们使用 3450 亿个token的公共数据集扩充此数据,创建了一个包含超过 7000 亿个token的训练语料库。

08ff4f1967b0c4ebb31f221425c5a192.png

数据的年代分布

087d9d635176244f0f704e85c67b5e20.png

模型效果

使用上述语料库的一部分,Bloomberg团队训练了一个 500 亿参数的仅包含解码器的因果语言模型。由此产生的模型在现有的特定金融领域 NLP 基准、Bloomberg内部基准以及大量流行通用 NLP 任务基准上得到了验证。BloombergGPT 在金融任务上的表现明显优于现有的类似规模的开放模型,同时在一般 NLP 基准测试中的表现与其他模型持平或更好。

Bloomberg-GPT 的性能指标

a71960ee5ccfe0d1704375ed0f6f1249.png

使用的评估基准

29dca16f9db8b9d935b903c43f48c830.png

用于评估金融任务的模板

a7f8dca1eeaf2c872ec4448ba2b3001b.png

金融领域任务的表现(通用任务、NER 和情绪分析)


2b1657ef2e1db36b0222fa9d291a45fd.png

59e73814c7a6700876e686be40a342ac.png

717d19caf9809e44b9d68b96f4ba1a32.png

使用 BIG-Bench(3 shot)标准进行知识评估

4eb9975f5aacca328ce2dcc3c9e72fbe.png

知识评估(1 shot 和 5 shot)

10c4e9111d2401be91a9b7a932862b33.png

效果总结

在许多基准测试的数十项任务中,与其他数百亿参数的模型相比,BloombergGPT的表现是最好。此外,在某些情况下,BloombergGPT的性能可以媲美甚至超越更大规模(数千亿参数)的模型。虽然 BloombergGPT 的目标是成为金融领域的一流模型,并且包含了通用训练数据以支持特定领域的训练,但该模型在通用数据上的能力仍然超过类似规模的模型,并且在某些情况下,媲美甚至优于更大规模的模型。

总结

Bloomberg 的首席技术官 Shawn Edwards 看到了新模型的很多价值:“BloombergGPT 将使我们能够处理许多新型应用,同时它为每个应用提供了比自定义模型更高的开箱即用性能 ,从而换取更快的上市时间。”

Bloomberg 机器学习产品和研究团队负责人 Gideon Mann 解释说,机器学习和 NLP 模型的质量取决于你输入的数据。 得益于 Bloomberg 四十多年来精心策划收集的金融数据,他们能够精心创建一个庞大而干净的特定领域数据集,以训练最适合金融用例的 LLM。 他们很高兴使用 BloombergGPT 来改进现有的 NLP 工作流程,同时也想出新的方法来使用这种模型来服务他们的客户。

我个人认为这种模式可能会增加金融 LLM 的价值。 但是,必须注意到这只是同类领域中的第一个模型。 随着我们对金融数据的训练和调优,预计会有更多进步。 所以,我们可以把它看成是第一代硬件,用欣赏和测试的眼光去看待它,用于商用可能还为时过早。

目录
相关文章
|
7月前
|
人工智能 自然语言处理 开发者
印度投资1037亿加速AI发展,重点布局大语言模型
【2月更文挑战第24天】印度投资1037亿加速AI发展,重点布局大语言模型
146 3
印度投资1037亿加速AI发展,重点布局大语言模型
|
4月前
|
人工智能 自然语言处理 前端开发
关于ToB垂直领域大模型的一点探索和尝试
本文分享了物流技术团队在垂直领域大模型开发和部署过程中的技术细节、挑战解决策略以及实际应用案例。
|
5月前
|
存储 SQL 人工智能
|
5月前
|
人工智能 自然语言处理 自动驾驶
AI大模型的战场:通用与垂直的较量
AI大模型的战场:通用与垂直的较量
244 0
|
7月前
|
自然语言处理 搜索推荐 区块链
|
7月前
|
机器学习/深度学习 搜索推荐
大模型企业级市场将向深度化、产业化、垂直化方向发展
【1月更文挑战第7天】大模型企业级市场将向深度化、产业化、垂直化方向发展
103 1
大模型企业级市场将向深度化、产业化、垂直化方向发展
|
机器学习/深度学习 数据采集 人工智能
科技云报道:大模型的中场战事,深入垂直行业腹地
大模型的发展已经从“通用”迈入“垂类”
300 0
科技云报道:大模型的中场战事,深入垂直行业腹地
|
人工智能 自然语言处理 算法
|
机器学习/深度学习 人工智能 城市大脑
全球首个知识增强千亿大模型鹏城-百度·文心发布,打破AI技术与行业落地鸿沟
全球首个知识增强千亿大模型鹏城-百度·文心发布,打破AI技术与行业落地鸿沟
|
数据采集 存储 人工智能
边缘计算,会成为拓展AI应用边界的新顶流吗?
很多人都听说过边缘计算,但不一定知道边缘计算是用来干嘛的?其实“边”是配合“端”一起来使用的。什么是“端”?举个例子,传感器、无人机都是典型的“端”。 如今,无人机已经远远不止用于拍大片了,因为无论是农业喷洒还是防汛抗旱,无论是电力巡检还是国土巡防,无人机经常出现在新闻报道中。只不过,无人机在很多行业应用中扮演了一个上帝视角的视频采集员的角色,而真正的实时视频分析离不开“幕后英雄”——边缘计算。
176 0

热门文章

最新文章