训练速度最高100倍提升!基于PyTorch实现的可微逻辑门网络开源

简介: 训练速度最高100倍提升!基于PyTorch实现的可微逻辑门网络开源


本文通过逻辑门组合学习来探索面向机器学习任务的逻辑门网络。这些网络由 AND 和 XOR 等逻辑门组成,为了实现有效训练,本文提出可微逻辑门网络,一种结合了实值逻辑和网络连续参数化松弛的架构。


随着神经网络的成功应用,各项研究和机构也一直在致力于实现快速且高效的计算,特别是在推理时。对此,各种技术应运而生,包括降低计算精度,二进制和稀疏神经网络。本文中,来自斯坦福大学、萨尔茨堡大学等机构的研究者希望训练出一种不同的、在计算机领域被广泛应用的体系架构:逻辑门网络(logic (gate) networks)。


训练像逻辑门这样的离散组件网络所面临的问题是,它们是不可微的,因此,一般而言,不能通过梯度下降等标准方法进行优化。研究者提出了一种方法是无梯度优化方法,如演化训练(evolutionary training),它适用于小型模型,但不适用于大型模型。


在这项工作中,该研究探索了用于机器学习任务的逻辑门网络。这些网络由「AND」和「XOR」等逻辑门电路组成,可以快速执行任务。逻辑门网络的难点在于它通常是不可微的,不允许用梯度下降进行训练。因此,可微逻辑门网络的出现是为了进行有效的训练。由此产生的离散逻辑门网络实现了快速的推理速度,例如,在单个 CPU 核上每秒处理超过一百万张 MNIST 图像。这篇论文入选 NeurIPS 2022 。




纽约大学计算机科学教授 Alfredo Canziani 表示:由逻辑门(如 AND 和 XOR)组成的可学习组合网络,允许非常快速的执行任务及硬件实现。



距离论文公开才过去三个月,论文作者 Felix Petersen 表示该研究的官方实现已经公布,他们发布了 difflogic 项目,这是一个基于 pytorch 实现的可微逻辑门网络库。不仅如此,经过优化现在的训练速度比最初的速度快 50-100 倍,因为该研究提供了高度优化的 CUDA 内核。



项目介绍



difflogic 是一个基于 Python 3.6 + 和 PyTorch 1.9.0 + 的库,基于逻辑门网络进行训练和推理。该库安装代码如下:



pip install difflogic


需要注意的是,使用 difflogic,还需要 CUDA、CUDA 工具包(用于编译)以及 torch>=1.9.0(匹配 CUDA 版本)。


下面给出了 MNIST 数据集的可微逻辑网络模型的定义示例:














from difflogic import LogicLayer, GroupSumimport torch
model = torch.nn.Sequential(    torch.nn.Flatten(),    LogicLayer(784, 16_000),    LogicLayer(16_000, 16_000),    LogicLayer(16_000, 16_000),    LogicLayer(16_000, 16_000),    LogicLayer(16_000, 16_000),    GroupSum(k=10, tau=30))


该模型接收了 784 维的输入,并返回 k=10,对应于 MNIST 的 10 个类。该模型可以用 torch.nn.CrossEntropyLoss 进行训练,类似于在 PyTorch 中训练其他神经网络模型的方式。值得注意的是,Adam 优化器(torch. optimt .Adam)可用于训练,推荐的默认学习率是 0.01 而不是 0.001。最后,同样需要注意的是,与传统的 MLP 神经网络相比,逻辑门网络每层神经元的数量要高得多,因为后者非常稀疏。


为了深入了解这些模块的细节,下面是一些更详细的示例:


layer = LogicLayer(    in_dim=784,             # number of inputs    out_dim=16_000,         # number of outputs    device='cuda',          # the device (cuda / cpu)    implementation='cuda',  # the implementation to be used (native cuda / vanilla pytorch)    connections='random',   # the method for the random initialization of the connections    grad_factor=1.1,        # for deep models (>6 layers), the grad_factor should be increased (e.g., 2) to avoid vanishing gradients)


模型推理


在训练期间,模型应该保持在 PyTorch 训练模式,即.train (),这种模式使得模型保持可微。现在有两种模式可以进行快速推理:


  • 第一种选择是使用 PackBitsTensor。PackBitsTensors 允许在 GPU 上高效动态的执行训练好的逻辑门网络。
  • 第二种选择是使用 CompiledLogicNet。CompiledLogicNet 允许在 CPU 上高效地执行固定训练的逻辑门网络。


下面给出一些实验示例,它们包含在 experiments 目录中。main.py 用于执行,main_baseline.py 是包含规则的神经网络基线。


MNIST

python experiments/main.py  -bs 100 -t  10 --dataset mnist20x20 -ni 200_000 -ef 1_000 -k  8_000 -l 6 --compile_modelpython experiments/main.py  -bs 100 -t  30 --dataset mnist      -ni 200_000 -ef 1_000 -k 64_000 -l 6 --compile_model# Baselines:python experiments/main_baseline.py  -bs 100 --dataset mnist    -ni 200_000 -ef 1_000 -k  128 -l 3python experiments/main_baseline.py  -bs 100 --dataset mnist    -ni 200_000 -ef 1_000 -k 2048 -l 7


CIFAR-10

python experiments/main.py  -bs 100 -t 100 --dataset cifar-10-3-thresholds  -ni 200_000 -ef 1_000 -k    12_000 -l 4 --compile_modelpython experiments/main.py  -bs 100 -t 100 --dataset cifar-10-3-thresholds  -ni 200_000 -ef 1_000 -k   128_000 -l 4 --compile_modelpython experiments/main.py  -bs 100 -t 100 --dataset cifar-10-31-thresholds -ni 200_000 -ef 1_000 -k   256_000 -l 5python experiments/main.py  -bs 100 -t 100 --dataset cifar-10-31-thresholds -ni 200_000 -ef 1_000 -k   512_000 -l 5python experiments/main.py  -bs 100 -t 100 --dataset cifar-10-31-thresholds -ni 200_000 -ef 1_000 -k 1_024_000 -


想要了解更多内容,请参考原项目。


相关文章
|
2天前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
112 59
|
10天前
|
机器学习/深度学习
CNN网络编译和训练
【8月更文挑战第10天】CNN网络编译和训练。
44 20
|
7天前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
30 1
|
7天前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
20 1
|
14天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
18天前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
20 5
|
1月前
|
存储 Prometheus 监控
|
3天前
|
Rust 监控 Linux
这款开源网络监控工具(sniffnet),太实用了!
这款开源网络监控工具(sniffnet),太实用了!
|
1月前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
|
2月前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
44 2

热门文章

最新文章