图神经网络发Nature子刊,却被爆比普通算法慢104倍,质疑者:灌水新高度?

简介: 图神经网络发Nature子刊,却被爆比普通算法慢104倍,质疑者:灌水新高度?
GNN 是近年来非常火的一个领域。最近,一篇 Nature 子刊论文提出了一种用 GNN 解决组合优化问题的方法,并声称该 GNN 优化器的性能与现有的求解器相当,甚至超过了现有的求解器。不过,这篇论文引来了一些质疑:有人指出,这个 GNN 的性能其实还不如经典的贪心算法,而且速度还比贪心算法慢得多(对于有一百万个变量的问题,贪心算法比 GNN 快 104 倍)。所以质疑者表示,「我们看不出有什么好的理由用这些 GNN 来解决该问题,就像用大锤砸坚果一样。」他们希望这些论文作者能够在宣称方法优越性之前,先和困难问题的基准比较一下。


近年来,神经网络解决了应用和基础科学方面的诸多难题,其中就包括离散组合优化问题,这也是我们理解计算极限的基础。

Martin JA Schuetz 等人 2022 年的研究《Combinatorial optimization with physics-inspired graph neural networks》[4]提出使用受物理启发的无监督图神经网络(GNN)来解决图上的组合优化问题,这种方法似乎很有前途,并发表在具有高影响力的期刊(《自然 · 机器智能》)上。该研究测试了 GNN 在两个标准优化问题上的性能:最大切割和最大独立集(MIS)。这种新提出的 GNN 优化器有一个非常好的特性:它可以扩展到许多更大的实例问题上。

论文地址:https://arxiv.org/pdf/2107.01188.pdf

不过,最近一篇新论文《Cracking nuts with a sledgehammer: when modern graph neural networks do worse than classical greedy algorithms》对 Martin JA Schuetz 等人的研究提出了质疑,认为 Martin JA Schuetz 等人提出的 GNN 优化器是「用大锤敲坚果( Cracking nuts with a sledgehammer ),类似于迫击炮打蚊子」,既浪费资源,效果也不好。

论文地址:https://arxiv.org/abs/2206.13211

MIS 问题的定义如下:给定一个具有 n 个节点、度固定为 d 的无向随机正则图(d-RRG),独立集(IS)是指不包含任何最近邻对的顶点子集;MIS 问题需要找到最大的 IS,其大小称为α。MIS 是一个 NP-hard 问题,但人们希望找到一种算法,以在多项式时间内找到一个大小尽可能接近最大值的 IS。此外,一个好算法不应因为 n 值较大而性能降低。

Martin JA Schuetz 等人提出的新型 GNN 可以为非常大的图(n≤ 10^6)找到 IS:算法运行时间与问题大小成比例:t∼ n^1.7,并且算法性能随着 n 的增加保持稳定,如下图 1 所示。

然而,当将所提 GNN 与其他可用算法进行性能比较时,该研究仅与 Boppana-Halldorsson(BH)近似算法 [8] 做了比较,该算法在 n≤ 500 时,运行时间 t∼n^2.9。

实际上还有许多其他计算 IS 的算法比 BH 快得多,该研究应该将所提 GNN 优化器与这些算法进行比较。其中,最简单的算法就是贪心算法(GA)[9]。基于度的贪心算法(DGA)经过优化后,运行时间几乎与节点数目 n 呈线性关系。

该研究比较了 Martin JA Schuetz 等人提出的 GNN 优化器(空心)和 DGA(实心)在 d=3 和 d=5 的 d-RRG 上查找 MIS 的性能。如图 1(右)所示,从运行时间与问题大小(节点数)的关系上看,DGA 比 GNN 好得多,前者的运行时间几乎与节点数 n 呈线性关系(指数是 1.15 可能是由于预渐近效应),而 GNN 的运行时间与节点数 n 几乎呈二次关系。

该研究认为 Martin JA Schuetz 等人的主张「基于图神经网络的优化器的性能与现有的求解器相当或优于现有的求解器,具有超越当前 SOTA 模型的能力,能够扩展到具有数百万个变量的问题」,经不起推敲,与实际实验结果不一致,Martin JA Schuetz 等人应对论文予以修改。

该研究详细阐明了 DGA 的性能,并认为这种简单的贪心算法应该被视为一个最低基准,任何新算法的性能必须至少比 DGA 好才能被采用。

当然,DGA 只是一种极为简单的算法,还有许多其他标准算法优于 DGA。Maria Chiara 等人 2019 年的论文《Monte carlo algorithms are very effective in finding the largest independent set in sparse random graphs》对多个解决 MIS 问题的算法性能进行了深入的研究。

基于此,该研究提出一个问题:「评估一个新的优化算法时,应该用什么真正困难的问题作为测试算法性能的基准?」

例如,该研究认为,在 d<16 的 d-RRG 中找出 MIS 可能只是一个容易的问题;对于较大的 d,优化的要求可能会更高,因为较大 IS 的聚类可能会给搜索 MIS 的算法带来障碍。因此,如果要选择作为基准的困难问题,一个可能的答案是研究 d>16 的 d-RRG 上的 MIS。这里可以将 d=20 和 d=100 的结果与 2019 年论文《Monte carlo algorithms are very effective in finding the largest independent set in sparse random graphs》中给出的结果进行比较。

显然,一个好的优化算法应该在 n 的多项式时间内完成,如果呈线性关系就更好了,找到的解的质量应优于简单的现有算法,并且不应随着 n 的增加而质量有所下滑。

该研究总结道:目前,基于神经网络的优化器(如 Martin JA Schuetz 等人提出的优化器)不满足上述要求,并且无法与简单的标准算法竞争以解决困难的优化问题。探究神经网络是否可以满足这一要求,或者它们的失败是否有更深层次的原因,这一点至关重要。


相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
30 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
23天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
67 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
40 2
|
30天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
神经网络算法以及应用场景和基本语法
神经网络算法以及应用场景和基本语法
43 0

热门文章

最新文章