字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》

简介: 字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》

化学、材料体系的模拟很可能会成为量子计算机最先颠覆的行业。变分量子特征值求解算法  (variational quantum eigensolver, VQE) 在近期含噪声中等规模器件上表现出应用于化学模拟的巨大潜力。2020 年,Google 公司利用 “悬铃木” 量子芯片实现了二亚胺 (N2H2) 异构化反应过程的量子计算,相关成果发表于《Science》杂志。然而,近期可实现的量子硬件的尺寸和保真度仍然面临着明显的限制,这对利用量子计算机模拟更加真实的化学、材料体系提出了挑战。

针对这一问题,字节跳动 AI Lab Research 团队联合清华大学化学系帅志刚课题组、中科院计算所孙晓明课题组、北京大学袁骁课题组和牛津大学孙金钊博士提出了利用密度矩阵嵌入理论 (Density Matrix Embedding Theory, DMET) 结合能量排序 VQE (energy-sorting VQE, ESVQE),减少分子体系模拟所需要的比特数和线路深度,这是首个系统性的研究大规模分子体系的量子计算模拟的方法。此外,本次工作首次实现仅用 16 比特的量子计算机模拟 144 比特规模的 C18,并准确地预测了其稳定的几何结构,相关研究成果于 2022 年发表于国际顶级刊物《Chemical Science》杂志上。


论文链接:https://pubs.rsc.org/en/content/articlepdf/2022/SC/D2SC01492K

密度矩阵嵌入理论的核心是将研究体系按空间分片,对整个体系进行较低精度的平均场计算,对分片后的每一片小体系进行较高精度的计算


其中高精度的计算在量子计算机上进行,而低精度计算(譬如 Hartree-Fock 计算)可以在经典计算机上进行。在这个工作中,低精度计算和高精度计算的自洽通过调整化学势实现


为验证这一算法的有效性,作者进行了一系列数值模拟测试。首先,在一维氢链 H10 的基准测试体系中,作者发现 DMET-ESVQE 可以达到与精确解 Full CI 相仿的精度。


随后,作者将该算法应用于 C6H8 的氢化反应和 C18 分子的平衡几何结构。数值测试发现 DMET-ESVQE 可以高精度地模拟化学反应势垒,且正确预言 C18 分子的平衡几何结构,与此同时, DMET-ESVQE 可以将 VQE 所需的量子比特数目减少一个数量级。



为了进一步测试 DMET-ESVQE 在真实量子硬件上的表现,作者进一步使用了带噪声的数值模拟器针对一维氢链体系进行了基准测试。结果表明 DMET-ESVQE 的结果随测量次数快速收敛,且使用误差缓解之后退极化噪声的影响也可以得到有效控制。


这一工作说明了 DMET-ESVQE 是模拟真实化学体系的有力武器,展示了近期量子硬件用于解决实际化学问题的可能性。随着量子计算硬件的成熟,基于量子嵌入模拟的量子计算将很有可能助力当前量子计算机求解强关联体系。此外,在量子求解器上,更多的拓展工作可以展开,比如我们还可以探索更浅层的量子线路。在划分体系上,我们可以探索更好的经典划分方法,来适应更大规模的体系。同时,我们可以考虑新的目标函数,通过自洽场迭代来进一步提高精度等。

团队简介


字节跳动 AI-Lab NLP&Research 专注于人工智能领域的前沿技术研究,涵盖了自然语言处理、机器人等多个技术研究领域,同时致力于将研究成果落地,为公司现有的产品和业务提供核心技术支持和服务。团队技术能力正通过火山引擎对外开放,赋能 AI 创新。


相关文章
|
8天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
8天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
8天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
1天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
27 14
|
5天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
|
1天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
19 0
|
2天前
|
缓存 人工智能 负载均衡
AI革新迭代:如何利用代理IP提升智能系统性能
在人工智能快速发展的背景下,智能系统的性能优化至关重要。本文详细介绍了如何利用代理IP提升智能系统性能,涵盖数据加速与缓存、负载均衡、突破地域限制、数据传输优化和网络安全防护等方面。结合具体案例和代码,展示了代理IP在实际应用中的价值和优势。
11 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
51 10
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
4天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
下一篇
DataWorks