字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》

简介: 字节AI Lab推出业界首个系统性大分子体系的量子计算模拟方法,成果入选《Chemical Science》

化学、材料体系的模拟很可能会成为量子计算机最先颠覆的行业。变分量子特征值求解算法  (variational quantum eigensolver, VQE) 在近期含噪声中等规模器件上表现出应用于化学模拟的巨大潜力。2020 年,Google 公司利用 “悬铃木” 量子芯片实现了二亚胺 (N2H2) 异构化反应过程的量子计算,相关成果发表于《Science》杂志。然而,近期可实现的量子硬件的尺寸和保真度仍然面临着明显的限制,这对利用量子计算机模拟更加真实的化学、材料体系提出了挑战。

针对这一问题,字节跳动 AI Lab Research 团队联合清华大学化学系帅志刚课题组、中科院计算所孙晓明课题组、北京大学袁骁课题组和牛津大学孙金钊博士提出了利用密度矩阵嵌入理论 (Density Matrix Embedding Theory, DMET) 结合能量排序 VQE (energy-sorting VQE, ESVQE),减少分子体系模拟所需要的比特数和线路深度,这是首个系统性的研究大规模分子体系的量子计算模拟的方法。此外,本次工作首次实现仅用 16 比特的量子计算机模拟 144 比特规模的 C18,并准确地预测了其稳定的几何结构,相关研究成果于 2022 年发表于国际顶级刊物《Chemical Science》杂志上。


论文链接:https://pubs.rsc.org/en/content/articlepdf/2022/SC/D2SC01492K

密度矩阵嵌入理论的核心是将研究体系按空间分片,对整个体系进行较低精度的平均场计算,对分片后的每一片小体系进行较高精度的计算


其中高精度的计算在量子计算机上进行,而低精度计算(譬如 Hartree-Fock 计算)可以在经典计算机上进行。在这个工作中,低精度计算和高精度计算的自洽通过调整化学势实现


为验证这一算法的有效性,作者进行了一系列数值模拟测试。首先,在一维氢链 H10 的基准测试体系中,作者发现 DMET-ESVQE 可以达到与精确解 Full CI 相仿的精度。


随后,作者将该算法应用于 C6H8 的氢化反应和 C18 分子的平衡几何结构。数值测试发现 DMET-ESVQE 可以高精度地模拟化学反应势垒,且正确预言 C18 分子的平衡几何结构,与此同时, DMET-ESVQE 可以将 VQE 所需的量子比特数目减少一个数量级。



为了进一步测试 DMET-ESVQE 在真实量子硬件上的表现,作者进一步使用了带噪声的数值模拟器针对一维氢链体系进行了基准测试。结果表明 DMET-ESVQE 的结果随测量次数快速收敛,且使用误差缓解之后退极化噪声的影响也可以得到有效控制。


这一工作说明了 DMET-ESVQE 是模拟真实化学体系的有力武器,展示了近期量子硬件用于解决实际化学问题的可能性。随着量子计算硬件的成熟,基于量子嵌入模拟的量子计算将很有可能助力当前量子计算机求解强关联体系。此外,在量子求解器上,更多的拓展工作可以展开,比如我们还可以探索更浅层的量子线路。在划分体系上,我们可以探索更好的经典划分方法,来适应更大规模的体系。同时,我们可以考虑新的目标函数,通过自洽场迭代来进一步提高精度等。

团队简介


字节跳动 AI-Lab NLP&Research 专注于人工智能领域的前沿技术研究,涵盖了自然语言处理、机器人等多个技术研究领域,同时致力于将研究成果落地,为公司现有的产品和业务提供核心技术支持和服务。团队技术能力正通过火山引擎对外开放,赋能 AI 创新。


相关文章
|
1月前
|
人工智能 监控 安全
提效40%?揭秘AI驱动的支付方式“一键接入”系统
本项目构建AI驱动的研发提效系统,通过Qwen Coder与MCP工具链协同,实现跨境支付渠道接入的自动化闭环。采用多智能体协作模式,结合结构化Prompt、任务拆解、流程管控与安全约束,显著提升研发效率与交付质量,探索大模型在复杂业务场景下的高采纳率编码实践。
373 26
提效40%?揭秘AI驱动的支付方式“一键接入”系统
|
1月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
345 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
1月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
212 6
|
1月前
|
人工智能 JSON 安全
Claude Code插件系统:重塑AI辅助编程的工作流
Anthropic为Claude Code推出插件系统与市场,支持斜杠命令、子代理、MCP服务器等功能模块,实现工作流自动化与团队协作标准化。开发者可封装常用工具或知识为插件,一键共享复用,构建个性化AI编程环境,推动AI助手从工具迈向生态化平台。
360 1
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
413 29
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
811 44
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
472 28
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
326 1
|
1月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
235 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
1月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
242 3

热门文章

最新文章