R2AU-Net: 基于循环残差注意力和半监督学习范式的道路裂缝分割算法

简介: R2AU-Net: 基于循环残差注意力和半监督学习范式的道路裂缝分割算法

6fc4641149d9d70d62c89c2a364bce4d.png

Title: A FEW-SHOT ATTENTION RECURRENT RESIDUAL U-NET FOR CRACK SEGMENTATION


Paper: https://arxiv.org/pdf/2303.01582.pdf


Code: https://github.com/ikatsamenis/CrackMap


导读

从图片中识别道路破损程度是道路养护的重要日常工作,随着人工智能领域的兴起,深度学习技术在道路基础设施的自动视觉检查中起着至关重要的作用。

69b84f3b35b427270d205d5d47673586.png

为更好的动态适应用户反馈,本文主要探讨了一种关于小样本语义分割的道路裂缝自动分割算法,其基于具有循环残差和注意力模块的U-Net架构——Recurrent Residual and Attention U-Net。当一些新的校正样本被送入分类器时,采用再训练策略可以动态地微调U-Net的权重。大量实验表明,在名为CrackMap的新数据集上,所提出的小样本R2AU-Net框架在Dice和IoU指标方面优于其他最先进的网络,


背景介绍

基于道路裂缝分割的工作主要可分为两类,即基于传统图像处理算法和基于现代深度学习算法。


传统方法

基于传统图像处理的方法大都是一些手工设计的模板按照一定的规律进行特征提取,如利用边缘、灰度、纹理等信息,此类方法不仅费时费力,极度依赖于专家经验,而且鲁棒性也非常差,只能适用于特定的环境下。


深度学习

基于深度学习的方法大都是基于卷积神经网络或者Transformer等架构进行端到端的特征提取。以道路裂缝分割为例,可以建模为一个二值分割网络,以原图作为输入,掩码图作为输出,通过训练自动学习出最优的参数。

e14445138ceff463a284bfb7b6d938e0.png

方法

Framework

71cecf1c14da7836196d2da9b6089e3f.png

如图1(a)所示,本文基于U-Net网络并结合循环残差和注意力模块提出了一种适用于道路裂缝分割的网络,称为R2AU-Net。与标准U-Net相比,R2AU-Net 结合了递归残差卷积层,可确保更好地表示分割任务的特征和注意力区域,以突出显示通过跳跃连接传递的显着特征。


此外,本文针对以往方法仅能从以训练的标注数据中学习的限制,引入了一种基于 R2AU-Net 的半监督学习范式few-shot refinement方案,它能够根据用户的反馈灵活的调整模型的行为和权重,进一步提高分割性能,如图1(b)所示.


R2AU-Net

R2AU-Net 这块没什么好讲的,拆开看就是一个Recurrent Residual U-Net + Attention U-Net 的超级缝合怪。作者强调该“魔改”模型是特意针对分割RGB图像中的裂缝而设计的,因此提供了对自动化和机器人驱动的维护过程至关重要的各种指标和属性的详细信息,例如几何形状、类型、方向、长度 、密度和裂纹形状。


关于语义分割这一块这里我们不会详细描述,感兴趣的小伙伴可以直接跳转到我们的语义分割大总结,强烈安利给还没看过的小伙伴,分上、下两个篇章:

d78409fbe91b852d357aeaa062607ca9.png6fab18ae678fbf6023e23c523b32091a.png

995c48099ae793d07fe79dc555a8375b.png

Few-shot learning for segmentation refinement



如上图所示,这是一种动态整改方案,可以基于用户反馈,提供网络的整体性能。简单点讲,这其实就是增量学习的范畴,其核心思想是如何保持原有知识尽可能不被遗忘的前提下学习新的知识。

具体地,对于一个给定的图像位置 ( i , j ) (i, j)(i,j),我们用 image.png 表示当前位置所对应的像素值。其次,对于每个输入 n,我们计算出它们的平均图像置信度得分image.png如下所示:

image.png

其中 C和 R分别对应于图像的列和行。同时,image.png

否则为 0,其中检测阈值设置为 0.5。因此,置信度分数仅考虑深度分类器提供的图像 n nn 上的破裂区域。随后,我们根据 In分数对图像进行排名。排名较低的图像的 5% 提供给工程师专家,他们纠正模型的分割输出。最后,经过细化(纠正)的小样本标注数据被反馈到网络以更新模型的权重。


关于增量学习的更多内容解读请移步至下方链接观看。

1f539ff769b10d4d59ec9e85dae06bc2.png

实验

f5e24ae511d038532683c2883a5deee6.png

9f9ddc89b5fce16ff8048ecd84e8ae7a.png

总结

今天给大家介绍的这篇工作本身没什么创新性,旨在传递给大家一个观点。就是现有的网络基础架构其实已经发展得很成熟了,无论是经典的 CNNs 还是近几年大火的 Transformer,现在新出的工作几乎都是大力出奇迹的节奏,通过堆积显卡跑消融实验发篇论文,真心不建议大多数小伙伴去卷这个方向。反而像今天这篇工作,笔者感觉真挺好,结合已有的工作探索一些新的“组合”,多去尝试解决一些实际的场景。


写在最后

如果您也对人工智能和计算机视觉全栈领域感兴趣,强烈推荐您关注有料、有趣、有爱的公众号『CVHub』,每日为大家带来精品原创、多领域、有深度的前沿科技论文解读及工业成熟解决方案!欢迎添加小编微信号:cv_huber,一起探讨更多有趣的话题!


目录
相关文章
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
25 0
|
5月前
|
人工智能 算法 大数据
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
这篇内容介绍了编程中避免使用 for 循环的一些方法,特别是针对 Python 语言。它强调了 for 循环在处理大数据或复杂逻辑时可能导致的性能、可读性和复杂度问题。
55 6
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
|
4月前
|
算法 搜索推荐
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
|
5月前
|
算法 测试技术 Python
python中算法无限循环(Infinite Loops)
【7月更文挑战第18天】
145 4
|
4月前
|
算法
【算法】递归总结:循环与递归的区别?递归与深搜的关系?
【算法】递归总结:循环与递归的区别?递归与深搜的关系?
|
5月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标
YOLO目标检测专栏介绍了HCF-Net,一种用于红外小目标检测的深度学习模型,它通过PPA、DASI和MDCR模块提升性能。PPA利用多分支特征提取和注意力机制,DASI实现自适应特征融合,MDCR通过多层深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上表现出色,超越其他方法。论文和代码分别在[arxiv.org](https://arxiv.org/pdf/2403.10778)和[github.com/zhengshuchen/HCFNet](https://github.com/zhengshuchen/HCFNet)上。YOLOv8的PPA类展示了整合注意力机制的结构
|
6月前
|
存储 算法 C语言
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
|
6月前
|
存储 编解码 算法
C#.NET逃逸时间算法生成分形图像的毕业设计完成!晒晒功能
该文介绍了一个使用C#.NET Visual Studio 2008开发的程序,包含错误修复的Julia、Mandelbrot和优化过的Newton三种算法,生成色彩丰富的分形图像。作者改进了原始算法的效率,将内层循环的画点操作移至外部,提升性能。程序提供五种图形模式,支持放大缩小及颜色更新,并允许用户自定义画布大小以调整精度。还具备保存为高质JPG的功能。附有四张示例图片展示生成的分形效果。
|
6月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
57 0
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。