图像特征提取与描述_角点特征01:Harris算法+Shi-Tomas算法

简介: Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化

815902569f6a467a99304f9ac1482386.png


1 Harris角点检测


1.1 原理


Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化,如下图所示:


eed370e006ce447a8bdc4c540feb3607.png


将上述思想转换为数学形式,即将局部窗口向各个方向移动(u,v)并计算所有灰度差异的总和,表达式如下:


82f4067a95c44366b6689fa61806e889.png


其中I(x,y)是局部窗口的图像灰度,I(x+u,y+v)是平移后的图像灰度,w(x,y)是窗口函数,该可以是矩形窗口,也可以是对每一个像素赋予不同权重的高斯窗口,如下所示:


83b8a3aaf1b446e381b945482b589b6b.png


角点检测中使E(u,v)的值最大。利用一阶泰勒展开有:


a00c3ba4658d4bb4b5adf35729650573.png


其中I_xIx和 I_yIy 是沿x和y方向的导数,可用sobel算子计算。


推导如下:


4cecdbe77469418ea54113a113b8f42f.png


M矩阵决定了E(u,v)的取值,下面我们利用M来求角点,M是Ix和Iy的二次项函数,可以表示成椭圆的形状,椭圆的长短半轴由M的特征值λ1和λ2决定,方向由特征矢量决定,如下图所示:


33e3c47342104faab097e68b7232b959.png


椭圆函数特征值与图像中的角点、直线(边缘)和平面之间的关系如下图所示。


220074b9478749c59d7bd415c049e939.png


共可分为三种情况:


  • 图像中的直线。一个特征值大,另一个特征值小,λ1>>λ2或 λ2>>λ1。椭圆函数值在某一方向上大,在其他方向上小。
  • 图像中的平面。两个特征值都小,且近似相等;椭圆函数数值在各个方向上都小。
  • 图像中的角点。两个特征值都大,且近似相等,椭圆函数在所有方向都增大


Harris给出的角点计算方法并不需要计算具体的特征值,而是计算一个角点响应值RR来判断角点。RR的计算公式为:


c0960b4701ab4fb48c5235334bbfe530.png


式中,detM为矩阵M的行列式;traceM为矩阵M的迹;α为常数,取值范围为0.04~0.06。事实上,特征是隐含在detM和traceM中,因为:


00c230a59b374b6f80a89dd22a3ac30e.png


那我们怎么判断角点呢?如下图所示:


70253b12e3ab44a28bf9b5efdf1453a2.png


  • 当R为大数值的正数时是角点
  • 当R为大数值的负数时是边界
  • 当R为小数是认为是平坦区域


1.2 实现


在OpenCV中实现Hariis检测使用的API是:


dst=cv.cornerHarris(src, blockSize, ksize, k)


参数:


  • img:数据类型为 float32 的输入图像。


  • blockSize:角点检测中要考虑的邻域大小。


  • ksize:sobel求导使用的核大小


  • k :角点检测方程中的自由参数,取值参数为 [0.04,0.06].


示例:


import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 1 读取图像,并转换成灰度图像
img = cv.imread('img/qipan.png')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 2 角点检测
# 2.1 输入图像必须是 float32
gray = np.float32(gray)
# 2.2 最后一个参数在 0.04 到 0.05 之间
dst = cv.cornerHarris(gray, 2, 3, 0.04)
# 3 设置阈值,将角点绘制出来,阈值根据图像进行选择
# dst > 0.001 * dst.max() 返回一个img大小的Flase和True矩阵
img[dst > 0.001 * dst.max()] = [0, 0, 255]
# 4 图像显示
plt.figure(figsize=(10, 8), dpi=100)
plt.imshow(img[:, :, ::-1]), plt.title('Harris角点检测')
plt.xticks([]), plt.yticks([])
plt.show()


结果如下:


10ea9e52f35c4dc8a947a6f297305209.png


Harris角点检测的优缺点:


优点:


  • 旋转不变性,椭圆转过一定角度但是其形状保持不变(特征值保持不变)


  • 对于图像灰度的仿射变化具有部分的不变性,由于仅仅使用了图像的一介导数,对于图像灰度平移变化不变;对于图像灰度尺度变化不变


缺点:


  • 对尺度很敏感,不具备几何尺度不变性。


  • 提取的角点是像素级的


2 Shi-Tomasi角点检测


2.1 原理


Shi-Tomasi算法是对Harris角点检测算法的改进,一般会比Harris算法得到更好的角点。Harris 算法的角点响应函数是将矩阵 M 的行列式值与 M 的迹相减,利用差值判断是否为角点。后来Shi 和Tomasi 提出改进的方法是,若矩阵M的两个特征值中较小的一个大于阈值,则认为他是角点,即:


7875aafd327a4290a4ebeb543b5f930e.png


如下图所示:


c0e2ecec91584ea7bc3cf433cd92875d.png


从这幅图中,可以看出来只有当 λ1 和 λ2 都大于最小值时,才被认为是角点。


2.2 实现


在OpenCV中实现Shi-Tomasi角点检测使用API:


corners = cv2.goodFeaturesToTrack ( image, maxcorners, qualityLevel, minDistance )


参数:


  • Image: 输入灰度图像
  • maxCorners : 获取角点数的数目。
  • qualityLevel:该参数指出最低可接受的角点质量水平,在0-1之间。
  • minDistance:角点之间最小的欧式距离,避免得到相邻特征点。

返回:


  • Corners: 搜索到的角点,在这里所有低于质量水平的角点被排除掉,然后把合格的角点按质量排序,然后将质量较好的角点附近(小于最小欧式距离)的角点删掉,最后找到maxCorners个角点返回。


示例:


import numpy as np 
import cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg') 
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 2 角点检测
corners = cv.goodFeaturesToTrack(gray,1000,0.01,10)  
# 3 绘制角点
for i in corners:
    x,y = i.ravel()
    cv.circle(img,(x,y),2,(0,0,255),-1)
# 4 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('shi-tomasi角点检测')
plt.xticks([]), plt.yticks([])
plt.show()


结果如下:


f29b8f8e1e1a43e29a8eb3b5ebf5e19b.png


总结


1.Harris算法


思想:通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化。


API: cv.cornerHarris()


2.Shi-Tomasi算法


对Harris算法的改进,能够更好地检测角点


API: cv2.goodFeatureToTrack()

目录
相关文章
|
20天前
|
资源调度 算法 计算机视觉
BRIEF描述子生成算法
BRIEF描述子生成算法
11 0
|
20天前
|
算法 计算机视觉
图像处理之积分图应用四(基于局部均值的图像二值化算法)
图像处理之积分图应用四(基于局部均值的图像二值化算法)
89 0
|
3天前
|
机器学习/深度学习 存储 人工智能
算法金 | 使用随机森林获取特征重要性
**随机森林算法简介**:集成多个决策树提升性能,常用于各类任务。在葡萄酒分类项目中,使用`RandomForestClassifier`实现模型,100棵树,得分100%。特征重要性显示了哪些化学成分影响最大。通过特征选择保持高准确性,证明了有效特征选择的重要性。7个关键特征中脯氨酸和酒精含量最重要。简洁高效,适用于特征工程。[链接指向知识星球]
29 5
|
3天前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
10天前
|
机器学习/深度学习 人工智能 算法
【CVPR2024】面向StableDiffusion的编辑算法FreePromptEditing,提升图像编辑效果
近日,阿里云人工智能平台PAI与华南理工大学贾奎教授团队合作在深度学习顶级会议 CVPR2024 上发表 FPE(Free-Prompt-Editing) 算法,这是一种面向StableDiffusion的图像编辑算法。在这篇论文中,StableDiffusion可用于实现图像编辑的本质被挖掘,解释证明了基于StableDiffusion编辑的算法本质,并基于此设计了新的图像编辑算法,大幅度提升了图像编辑的效率。
|
7天前
|
人工智能 搜索推荐 算法
常见的经典排序算法及其特征
【6月更文挑战第21天】本文介绍经典排序算法的特征和例子,详细步骤和例子包含在内,可以只选择阅读关心的内容。
25 3
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
【CVPR2024】阿里云人工智能平台PAI图像编辑算法论文入选CVPR2024
近期,阿里云人工智能平台PAI发表的图像编辑算法论文在CVPR-2024上正式亮相发表。论文成果是阿里云与华南理工大学贾奎教授领衔的团队共同研发。此次入选标志着阿里云人工智能平台PAI自主研发的图像编辑算法达到了先进水平,赢得了国际学术界的认可。在阿里云人工智能平台PAI算法团队和华南理工大学的老师学生们一同的坚持和热情下,将阿里云在图像生成与编辑领域的先进理念得以通过学术论文和会议的形式,向业界传递和展现。
|
10天前
|
机器学习/深度学习 算法 Python
机器学习算法的比较与选择是在实际应用中非常重要的一步,不同的算法适用于不同的问题和数据特征。
机器学习算法的比较与选择是在实际应用中非常重要的一步,不同的算法适用于不同的问题和数据特征。
|
13天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
17天前
|
存储 编解码 算法
C#.NET逃逸时间算法生成分形图像的毕业设计完成!晒晒功能
该文介绍了一个使用C#.NET Visual Studio 2008开发的程序,包含错误修复的Julia、Mandelbrot和优化过的Newton三种算法,生成色彩丰富的分形图像。作者改进了原始算法的效率,将内层循环的画点操作移至外部,提升性能。程序提供五种图形模式,支持放大缩小及颜色更新,并允许用户自定义画布大小以调整精度。还具备保存为高质JPG的功能。附有四张示例图片展示生成的分形效果。