m车载自组织网络(Vehicular Ad-hoc Network,VANET)通信系统的matlab仿真

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: m车载自组织网络(Vehicular Ad-hoc Network,VANET)通信系统的matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

f749448febd7c566fc2965dba7be0436_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
153574f4cb006e1167ae8b5646273990_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3f8d610b9d3765e708689c8704ba252c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
530f0af78a4e4621216f996b1cd4f981_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5607bd2689f37463164e9b1966283287_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

     这里根据那个fluid dynamic model 和stochastic model模型,这里使用一种如下的车辆移动模型,能够反映出车辆移动的随机性和连续性。

    首先,考虑到第三步骤的实际的问题的仿真,因此,我们在这里,就必须考虑符合实际VANET的车辆移动模型。

    第一:要反映出真实的城市道路情况,比如车道,十字路口,速度限制。

    第二:正确反映车的运动规律。

    针对第一种情况,我们需要考虑节点运动模型,对于第二种情况,我们需要考虑车辆的随机运动情况(类似于论文的stochastic model模型)

  对于任意时刻t,某两个车辆的速度分别为:和,为了保证整个行驶过程是安全的,车与车之间必须保持一个安全的距离,设这个安全距离为。那么相对于前一个车辆来讲,后一个车辆的安全速度为:

1624e38cf29ba552b1efbf5448fc14af_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    从宏观角度考虑,那么就是整个车道网络中,车流的移动情况,这里我们使用如下的数学原理:

     宏观移动模型,将道路拓扑视为任意方向的街道并任意连接而组成的网络图。两个拐角之间的街道定义为块。将一个块上的一组车辆视为一个单元,该单元的车辆共享一组参数:速度 v,车流密度 k 和车流体积 q = kv。

    将车流视为典型的流体后,车辆的速度和车辆密度的关系为:

278fd11c6fc693070568ebe449f699c8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    针对不同的road segment。

725886228faa09345f6f28d9efe479e4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    对于每个road的segment,我们使用随机模型,将直线路线上的车流进行分流,即满足一定概率的车流左右转弯,而同时,由于一定概率的车流会从垂直的线路行驶入直线线路上。这个过程我们使用随机过程分析,假设每个车流得到每个路口的时候,会以0.5的概率继续向前行驶,以0.25的概率左右转弯。然后车辆对这三个方向的判断,满足泊松分布。




3.MATLAB核心程序

q1   = zeros(1,length(Kjam));
q2   = zeros(1,length(Kjam));
q3   = zeros(1,length(Kjam));
for i = 1:length(Kjam)
    n     = 1;
    V0    = c*Kjam(i)^((n+1)/2)/(n+1)/(n+1);
    q1(i) = V0*k*(1-(k/Kjam(i))^((n+1)/2));
    n     =-0.5;
    V0    = c*Kjam(i)^((n+1)/2)/(n+1)/(n+1);
    q2(i) = V0*k*(1-(k/Kjam(i))^((n+1)/2));
    n     =-1;
    q3(i) = c*k*log(Kjam(i)/k);
end
figure;
plot(Kjam,q1,'b-s',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.9,0.0]);
hold on;
plot(Kjam,q2,'r-o',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(Kjam,q3,'k-^',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.0,0.0,0.9]);
hold off;
grid on
xlabel('Kjam');
ylabel('Q');
legend('Greenshield','Drew','Greenberg');
 
 
 
%%
%步骤二
T    = [0:1:7500];%全部为绿灯的情况
V1   = zeros(1,length(T));
V2   = zeros(1,length(T));
Vsafe= zeros(1,length(T));
Videa= zeros(1,length(T));
dsafe= zeros(1,length(T));%车辆之间的安全距离
Dxd  = zeros(1,length(T));
 
V01  = 50000/3600;%前一辆车子的初始速度
V02  = 50000/3600;%前一辆车子的初始速度
a1   = 0;%前一个车子加速度
a2   = 0.01;%后一个车子加速度
Vmax = 80000/3600;%公里最大限速
d1   = 0;
d2   = 0;
............................................................................
figure;
subplot(211);
plot(T,V1,'g','linewidth',4);
hold on
plot(T,V2,'r--');
hold on
xlabel('Times(s)');
ylabel('V');
legend('real V of car1','real V of car2');
 
 
subplot(212);
plot(T,Dxd,'g','linewidth',2);
xlabel('Times(s)');
ylabel('the distance between 2 cars');
 
%出现红灯,减速
T    = [0:0.01:60];%全部为绿灯的情况
V1   = zeros(1,length(T));
V2   = zeros(1,length(T));
Vsafe= zeros(1,length(T));
Videa= zeros(1,length(T));
dsafe= zeros(1,length(T));%车辆之间的安全距离
Dxd  = zeros(1,length(T));
 
V01  = 50000/3600;%前一辆车子的初始速度
V02  = 50000/3600;%前一辆车子的初始速度
a1   = -0.5;%前一个车子加速度
a2   = -0.47;%后一个车子加速度
Vmax = 80000/3600;%公里最大限速
d1   = 0;
d2   = 0;
..............................................................................
figure;
subplot(211);
plot(T,V1,'b','linewidth',2);
hold on
plot(T,V2,'r--');
hold on
xlabel('Times(s)');
ylabel('V');
legend('real V of car1','real V of car2');
subplot(212);
plot(T,Dxd,'b','linewidth',2);
xlabel('Times(s)');
ylabel('the distance between 2 cars');
相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
19小时前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
7 0
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
1天前
|
算法 调度
基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
`MATLAB2022a`仿真实现PPNSA+扰动算子的车间调度优化,支持工件和机器数量调整,输出甘特图与收敛曲线。算法针对JSSP,采用启发式策略应对NP难问题,最小化最大完工时间。[图:算法流程示意图]
|
2天前
|
机器学习/深度学习 数据采集 算法
m基于Googlenet深度学习的运动项目识别系统matlab仿真,包括GUI界面
**摘要:** 在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。
2 0
|
8天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
1月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
1月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
1月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
1月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章