【Pytorch神经网络实战案例】02 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法②

简介: 【Pytorch神经网络实战案例】02 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法②
import torch
import torchvision
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
# 取消全局证书验证(当项目对安全性问题不太重视时,推荐使用,可以全局取消证书的验证,简易方便)
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 定义训练设备===》使用CPU进行训练方法②
# device=torch.device("cpu")
# 定义训练设备===》使用GPU进行训练方法②
# device=torch.device("cuda")
# 定义训练设备===》使用第X张GPU进行训练方法②
# device=torch.device("cuda:0")
# 定义训练设备===》根据机器情况选择能否用GPU进行训练方法②
device=torch.device("cuda" if torch.cuda.is_available() else "cup")
print("当前程序正在{}上运行".format(device))
# 准备数据集
train_data=torchvision.datasets.CIFAR10("datas-train",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10("datas-test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 获得数据集的长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练--数据集的长度为:{}".format(train_data_size))
print("测试--数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
# Batch Size定义:一次训练所选取的样本数。
# Batch Size的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU内存不大,该数值最好设置小一点。
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
# 创建网络模型
# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            # Conv2d中
            ##in_channels:输入的通道数目 【必选】
            ##out_channels: 输出的通道数目 【必选】
            ##kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
            ##stride: 卷积每次滑动的步长为多少,默认是 1 【可选】
            ##padding(手动计算):设置在所有边界增加值为0的边距的大小(也就是在feature map 外围增加几圈 0 ),
            ##                 例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
            ##dilation:控制卷积核之间的间距【可选】
            nn.Conv2d(3, 32, 5, 1, 2),
            # MaxPool2d中:
            # #kernel_size(int or tuple) - max pooling的窗口大小,
            # # stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
            # # padding(int or tuple, optional) - 输入的每一条边补充0的层数
            # # dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
            # # return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
            # # ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            # nn.Linear()是用于设置网络中的全连接层的,在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size]
            #              相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
tudui=Tudui()
# 定义训练设备===》使用GPU进行训练方法②
tudui=tudui.to(device)
# 损失函数
# 使用交叉熵==>分类
loss_fn=nn.CrossEntropyLoss()
# 定义训练设备===》使用GPU进行训练方法②
loss_fn=loss_fn.to(device)
# 优化器
learning_rate=0.01 #学习速率
optimizer=torch.optim.SGD(tudui.parameters(),lr=learning_rate)
#设置训练网络的参数
#记录训练的次数
total_train_step=0
# 记录测试的次数
test_train_step=0
# 训练的轮次
epoch=10
# 添加tensorboard
writer=SummaryWriter("firstjuan")
for i in range(epoch): #0-9
    print("-----------第{}轮训练开始-----------".format(i+1))
    tudui.train()
    # 训练步骤开始
    for data in train_dataloader:
        imgs,targets=data
        # 定义训练设备===》使用GPU进行训练方法②
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs=tudui(imgs)
        #将计算所得的output的数值与真实数值进行对比,即求差
        loss=loss_fn(outputs,torch.squeeze(targets).long())
        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 记录训练train的次数+1
        total_train_step=total_train_step+1
        if total_train_step %100==0 : #减少输出 方便查看测试结果
            print("训练次数:{},损失值loss:{}".format(total_train_step,loss))
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    # 测试步骤开始
    tudui.eval()
    total_test_loss=0
    # 正确率
    total_accuracy=0
    with torch.no_grad(): #保证网络模型的梯度保持没有,仅需要测试,不需要对梯度进行优化与调整
        for data in test_dataloader:
            imgs,targets=data
            # 定义训练设备===》使用GPU进行训练方法②
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs=tudui(imgs)
            loss=loss_fn(outputs,targets)
            total_test_loss=total_test_loss+loss.item()
            # 1为横向 0为竖 计算正确率
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率accuracy:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy", total_test_loss, test_train_step)
    writer.add_scalar("test_loss",total_accuracy/test_data_size,test_train_step)
    # 记录测试test的次数+1
    test_train_step=test_train_step+1
    # 保存模型
    # torch.save(tudui.state_dict(),"tudui_{}".format(i))
    torch.save(tudui,"tudui_{}.pth".format(i))
    print("模型已经保存")
writer.close()


import torch
from torch import nn
# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            # Conv2d中
            ##in_channels:输入的通道数目 【必选】
            ##out_channels: 输出的通道数目 【必选】
            ##kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
            ##stride: 卷积每次滑动的步长为多少,默认是 1 【可选】
            ##padding(手动计算):设置在所有边界增加值为0的边距的大小(也就是在feature map 外围增加几圈 0 ),
            ##                 例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
            ##dilation:控制卷积核之间的间距【可选】
            nn.Conv2d(3, 32, 5, 1, 2),
            # MaxPool2d中:
            # #kernel_size(int or tuple) - max pooling的窗口大小,
            # # stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
            # # padding(int or tuple, optional) - 输入的每一条边补充0的层数
            # # dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
            # # return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
            # # ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            # nn.Linear()是用于设置网络中的全连接层的,在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size]
            #              相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64, 3, 32, 32))
    output = tudui(input)
    print(output.shape)


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
11天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
1月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
33 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
22天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
82 1
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
23 0
|
1月前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
25 1
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章