功能上线 | AI Earth地球科学云平台新增机器学习类函数算子

简介: 功能上线 | AI Earth地球科学云平台新增机器学习类函数算子

机器学习类函数算子

AI Earth在用户访谈中收到了多位用户反馈,希望平台能提供机器学习相关算子能力。我们快速规划和研发,近期上线了20多类与机器学习相关的函数算子,包括常用的分类器,如随机森林、支持向量机、贝叶斯等,同时上线对分类模型精度进行评价的混淆矩阵。

/函数列表/

函数名称

函数用途

aie.Classifier.linearsvm

创建线性支持向量机分类器

aie.Classifier.decisionTree

创建决策树分类器

aie.Classifer.cart

创建CART分类器

aie.Classifer.randomForest

创建随机森林分类器

aie.Classifier.gradientTreeBoost

创建梯度提升树分类器

aie.Classifier.AdaBoost

创建自适应集成分类器

aie.Classifer.naiveBayes

创建贝叶斯分类器

aie.Classifer.train

利用样本数据对分类器进行训练

aie.Classifier.confusionMatrix

基于已经训练好的分类器,对训练样本进行再预测,获取真实结果与预测结果的混淆矩阵

aie.Image.classify

对影像进行分类

aie.FeatureCollection.classify

对FeatureCollection进行分类

aie.ConfusionMatrix

构建混淆矩阵

aie.ConfusionMatrix.accuracy

计算混淆矩阵的准确率

aie.ConfusionMatrix.consumersAccuracy

计算混淆矩阵每一类别的查全率

aie.ConfusionMatrix.fscore

计算混淆矩阵每一类别的F度量

aie.ConfusionMatrix.kappa

计算混淆矩阵的kappa系数

aie.ConfusionMatrix.producersAccuracy

计算混淆矩阵每一类别的查准率

aie.FeatureCollection.errorMatrix

基于FeatureCollection中指定的两列属性构建混淆矩阵

aie.Image.sample

从影像中获取样本点,每一个样本点将包含对应坐标点下所有波段的像元值

 

/应用案例/

平台的案例广场中提供了进行地表覆盖监督分类的应用案例,我们利用ESA地表覆盖数据作为随机采样的训练样本真值标签,对单景Sentinel-2A影像采用自适应集成分类器(aie.Classifier.adaBoost)进行地物覆盖的分类,并利用混淆矩阵进行分类精度的分析。

欢迎平台用户进行相关体验与测试。

 

附案例代码

  • 利用ESA地表覆盖数据,作为训练样本的地物真值标签。
1. 
2. # 指定研究区域
3. roi = aie.Geometry.BBox(119.8679, 29.7058, 121.0332, 30.7178)
4. 
5. # 使用ESA地表覆盖分类作为标签类别, 并将其裁剪到研究区
6. lc = aie.ImageCollection('ESA_WORLD_COVER_V100').filterBounds(roi).mosaic().clip(roi)
7. 
8. # 将ESA地表覆盖分类值重新映射到[0, 10]
9. class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
10. remap_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
11. label = 'lc'
12. lc_remap = lc.remap(class_values, remap_values).rename([label])
13. 
14. # 选取一景S2A影像的地表辐射波段, 作为训练和预测示例
15. img = aie.Image('S2A_MSIL2A_20220103T024121_N0301_R089_T51RTP_20220103T050347').select('B.*')
16. 
17. # 指定获取样本的范围, 如果样本范围过大, 同时采样分辨率过高的话, 将导致sample函数运行时间过长
18. sample_roi = aie.Geometry.BBox(120.1730, 30.1086, 120.3846, 30.2862)
19. # 指定在10m分辨率下获取1000个样本点, 由于sample函数无法保证各类别样本数量均衡, 因此可自行上传训练样本
20. samples = img.addBands(lc_remap).sample(sample_roi, 10, 1000)
21. 
22. # 在训练样本中增加一列随机数, 选取80%的样本为训练样本, 选取20%的样本为验证样本
23. sample = samples.randomColumn()
24. training_sample = sample.filter(aie.Filter.lte('random', 0.8))
25. validation_sample = sample.filter(aie.Filter.gt('random', 0.8))
  •  
  • 创建分类器,并利用随机获取的样本进行训练,同时利用混淆矩阵进行精度评估。
1. 
2. # 创建自适应集成分类器,并进行训练
3. trained_classifier = aie.Classifier.adaBoost(10).train(training_sample, label, img.bandNames().getInfo())
4. 
5. # 训练集混淆矩阵包含的类别,对应class_values中的类别为[10, 30, 40, 50, 60, 70]
6. train_accuracy = trained_classifier.confusionMatrix()
7. print('Training error matrix:', train_accuracy.getInfo())
8. print('Training overall accuracy:', train_accuracy.accuracy().getInfo())
9. 
10. # 使用验证集对分类器进行评估
11. validation = validation_sample.classify(trained_classifier)
12. # 验证集混淆矩阵包含的类别,对应class_values中的类别为[10, 40, 50, 60, 70]
13. validation_accuracy = validation.errorMatrix(label, 'classification')
14. print('Validation error matrix:', validation_accuracy.getInfo())
15. print('Validation accuracy:', validation_accuracy.accuracy().getInfo())
  • 对Sentinel-2影像进行分类,并将结果可视化
1. 
2. # 使用训练好的分类器对影像进行分类
3. img_classified = img.classify(trained_classifier)
4. 
5. color = ['#006400' ,'#ffbb22', '#ffff4c', '#f096ff', '#fa0000', '#b4b4b4',
6. '#f0f0f0', '#0064c8', '#0096a0', '#00cf75', '#fae6a0']
7. map = aie.Map(
8.     center=roi.getCenter(),
9.     height=800,
10.     zoom=9
11. )
12. # 待分类影像真彩色图层
13. map.addLayer(
14.     img,
15.     {
16. 'bands': ['B4', 'B3', 'B2'],
17. 'min': 200,
18. 'max': 1800
19.     },
20. 'True Color (432)',
21.     bounds=roi.getBounds()
22. )
23. # 自适应集成分类图层
24. map.addLayer(
25.     img_classified,
26.     {
27. 'bands': 'classification',
28. 'min': 0,
29. 'max': 10,
30. 'palette': color
31.     },
32. 'aie_classification',
33.     bounds=roi.getBounds()
34. )
35. map


相关文章
|
26天前
|
人工智能 自动驾驶 搜索推荐
【通义】AI视界|苹果AI本周正式上线,将引入四大功能
本文由【通义】自动生成,涵盖苹果AI上线、特斯拉被华尔街重新评估、谷歌开发控制计算机的AI、Meta与路透社合作及Waymo获56亿美元融资等科技动态。点击链接或扫描二维码获取更多信息。
|
1月前
|
人工智能 算法 前端开发
首个 AI 编程认证课程上线!阿里云 AI Clouder 认证:基于通义灵码实现高效 AI 编码
为了帮助企业和开发者更好使用通义灵码,阿里云上线了“AI Clouder 认证课程--基于通义灵码实现高效 AI 编码”。本课程汇聚了后端、前端、算法领域 5 名实战派专家,带你体验 4 大研发场景实践,上手 3 大实操演练,深度掌握智能编码助手通义灵码,实现全栈 AI 编码技能跃升。
|
1月前
|
人工智能 算法 前端开发
首个 AI 编程认证课程上线!阿里云 AI Clouder 认证:基于通义灵码实现高效 AI 编码
为了帮助企业和开发者更好使用通义灵码,阿里云上线了“AI Clouder 认证课程--基于通义灵码实现高效 AI 编码”。本课程汇聚了后端、前端、算法领域 5 名实战派专家,带你体验 4 大研发场景实践,上手 3 大实操演练,深度掌握智能编码助手通义灵码,实现全栈 AI 编码技能跃升。
|
1月前
|
人工智能 IDE 开发工具
给IntelliJ IDEA添加AI功能
这篇文章讲解了如何在IntelliJ IDEA中安装和使用阿里云开发的通义灵码插件,以增强IDE的人工智能辅助编程功能。
324 0
给IntelliJ IDEA添加AI功能
|
2月前
|
人工智能 物联网 开发者
魔搭上线AIGC专区,为开发者提供一站式AI创作开发平台
魔搭上线AIGC专区,首批上架157个风格化大模型,专业文生图全免费~
127 16
|
2月前
|
人工智能 自然语言处理 算法
|
2月前
|
人工智能 IDE 程序员
通义灵码 AI 程序员正式上线!
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
370 4
|
2月前
|
机器学习/深度学习 人工智能 供应链
【通义】AI视界|OpenAI的“草莓”模型预计两周内上线!像人类一样思考!
本文介绍了近期科技领域的五大亮点:OpenAI即将推出的新一代AI模型“草莓”,具备高级推理能力;亚马逊测试AI技术加速有声读物生产,通过语音克隆提高效率;Kimi API新增联网搜索功能,拓宽信息来源;顺丰发布物流行业专用大语言模型“丰语”,提升工作效率;钉钉推出“AI班级群”功能,改善家校沟通体验。更多详情,请访问[通义官网]。
|
2月前
|
人工智能 监控 数据可视化
如何利用 DataV 的 AI 功能进行数据可视化?
如何利用 DataV 的 AI 功能进行数据可视化?
132 1

热门文章

最新文章