功能上线 | AI Earth地球科学云平台新增机器学习类函数算子

简介: 功能上线 | AI Earth地球科学云平台新增机器学习类函数算子

机器学习类函数算子

AI Earth在用户访谈中收到了多位用户反馈,希望平台能提供机器学习相关算子能力。我们快速规划和研发,近期上线了20多类与机器学习相关的函数算子,包括常用的分类器,如随机森林、支持向量机、贝叶斯等,同时上线对分类模型精度进行评价的混淆矩阵。

/函数列表/

函数名称

函数用途

aie.Classifier.linearsvm

创建线性支持向量机分类器

aie.Classifier.decisionTree

创建决策树分类器

aie.Classifer.cart

创建CART分类器

aie.Classifer.randomForest

创建随机森林分类器

aie.Classifier.gradientTreeBoost

创建梯度提升树分类器

aie.Classifier.AdaBoost

创建自适应集成分类器

aie.Classifer.naiveBayes

创建贝叶斯分类器

aie.Classifer.train

利用样本数据对分类器进行训练

aie.Classifier.confusionMatrix

基于已经训练好的分类器,对训练样本进行再预测,获取真实结果与预测结果的混淆矩阵

aie.Image.classify

对影像进行分类

aie.FeatureCollection.classify

对FeatureCollection进行分类

aie.ConfusionMatrix

构建混淆矩阵

aie.ConfusionMatrix.accuracy

计算混淆矩阵的准确率

aie.ConfusionMatrix.consumersAccuracy

计算混淆矩阵每一类别的查全率

aie.ConfusionMatrix.fscore

计算混淆矩阵每一类别的F度量

aie.ConfusionMatrix.kappa

计算混淆矩阵的kappa系数

aie.ConfusionMatrix.producersAccuracy

计算混淆矩阵每一类别的查准率

aie.FeatureCollection.errorMatrix

基于FeatureCollection中指定的两列属性构建混淆矩阵

aie.Image.sample

从影像中获取样本点,每一个样本点将包含对应坐标点下所有波段的像元值

 

/应用案例/

平台的案例广场中提供了进行地表覆盖监督分类的应用案例,我们利用ESA地表覆盖数据作为随机采样的训练样本真值标签,对单景Sentinel-2A影像采用自适应集成分类器(aie.Classifier.adaBoost)进行地物覆盖的分类,并利用混淆矩阵进行分类精度的分析。

欢迎平台用户进行相关体验与测试。

 

附案例代码

  • 利用ESA地表覆盖数据,作为训练样本的地物真值标签。
1. 
2. # 指定研究区域
3. roi = aie.Geometry.BBox(119.8679, 29.7058, 121.0332, 30.7178)
4. 
5. # 使用ESA地表覆盖分类作为标签类别, 并将其裁剪到研究区
6. lc = aie.ImageCollection('ESA_WORLD_COVER_V100').filterBounds(roi).mosaic().clip(roi)
7. 
8. # 将ESA地表覆盖分类值重新映射到[0, 10]
9. class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
10. remap_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
11. label = 'lc'
12. lc_remap = lc.remap(class_values, remap_values).rename([label])
13. 
14. # 选取一景S2A影像的地表辐射波段, 作为训练和预测示例
15. img = aie.Image('S2A_MSIL2A_20220103T024121_N0301_R089_T51RTP_20220103T050347').select('B.*')
16. 
17. # 指定获取样本的范围, 如果样本范围过大, 同时采样分辨率过高的话, 将导致sample函数运行时间过长
18. sample_roi = aie.Geometry.BBox(120.1730, 30.1086, 120.3846, 30.2862)
19. # 指定在10m分辨率下获取1000个样本点, 由于sample函数无法保证各类别样本数量均衡, 因此可自行上传训练样本
20. samples = img.addBands(lc_remap).sample(sample_roi, 10, 1000)
21. 
22. # 在训练样本中增加一列随机数, 选取80%的样本为训练样本, 选取20%的样本为验证样本
23. sample = samples.randomColumn()
24. training_sample = sample.filter(aie.Filter.lte('random', 0.8))
25. validation_sample = sample.filter(aie.Filter.gt('random', 0.8))
  •  
  • 创建分类器,并利用随机获取的样本进行训练,同时利用混淆矩阵进行精度评估。
1. 
2. # 创建自适应集成分类器,并进行训练
3. trained_classifier = aie.Classifier.adaBoost(10).train(training_sample, label, img.bandNames().getInfo())
4. 
5. # 训练集混淆矩阵包含的类别,对应class_values中的类别为[10, 30, 40, 50, 60, 70]
6. train_accuracy = trained_classifier.confusionMatrix()
7. print('Training error matrix:', train_accuracy.getInfo())
8. print('Training overall accuracy:', train_accuracy.accuracy().getInfo())
9. 
10. # 使用验证集对分类器进行评估
11. validation = validation_sample.classify(trained_classifier)
12. # 验证集混淆矩阵包含的类别,对应class_values中的类别为[10, 40, 50, 60, 70]
13. validation_accuracy = validation.errorMatrix(label, 'classification')
14. print('Validation error matrix:', validation_accuracy.getInfo())
15. print('Validation accuracy:', validation_accuracy.accuracy().getInfo())
  • 对Sentinel-2影像进行分类,并将结果可视化
1. 
2. # 使用训练好的分类器对影像进行分类
3. img_classified = img.classify(trained_classifier)
4. 
5. color = ['#006400' ,'#ffbb22', '#ffff4c', '#f096ff', '#fa0000', '#b4b4b4',
6. '#f0f0f0', '#0064c8', '#0096a0', '#00cf75', '#fae6a0']
7. map = aie.Map(
8.     center=roi.getCenter(),
9.     height=800,
10.     zoom=9
11. )
12. # 待分类影像真彩色图层
13. map.addLayer(
14.     img,
15.     {
16. 'bands': ['B4', 'B3', 'B2'],
17. 'min': 200,
18. 'max': 1800
19.     },
20. 'True Color (432)',
21.     bounds=roi.getBounds()
22. )
23. # 自适应集成分类图层
24. map.addLayer(
25.     img_classified,
26.     {
27. 'bands': 'classification',
28. 'min': 0,
29. 'max': 10,
30. 'palette': color
31.     },
32. 'aie_classification',
33.     bounds=roi.getBounds()
34. )
35. map


相关文章
|
5月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
5月前
|
存储 人工智能 测试技术
用AI提升测试效率:智能体平台的「需求文档管理」功能上线啦!
霍格沃兹测试开发学社推出AI智能体测试平台,全新「需求文档管理」功能助力高效测试准备。集中管理需求文档,支持多种上传方式,智能生成测试用例,提升测试效率与准确性,助力迈向智能化测试新时代。
|
人工智能 自然语言处理 前端开发
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
淘宝推荐信息流业务,常年被“需求多、技术栈杂、协作慢”困扰,需求上线周期动辄一周。WaterFlow——一套 AI 驱动的端到端开发新实践,让部分需求两天内上线,甚至产品经理也能“自产自销”需求。短短数月,已落地 30+ 需求、自动生成 5.4 万行代码,大幅提升研发效率。接下来,我们将揭秘它是如何落地并改变协作模式的。
642 37
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
|
7月前
|
人工智能 安全 大数据
硬核来袭!「AI 进化论:智算时代 OS 的破局之路」首期直播上线
从学术前沿到企业实践,从技术演进到生态共建,深度拆解 AI 时代操作系统的挑战与机遇,揭秘阿里云服务器操作系统背后的技术沉淀与产品布局。
|
7月前
|
人工智能 自然语言处理 数据可视化
AI 助手带你玩转数据分析!通义灵码保姆级教学 | 共学课2期上线
7月15日20:00,通义灵码联合WaytoAGI社区推出《AI助手带你玩转数据分析》公开课。零门槛、零代码,只需中文指令,即可完成数据读取、分析到报告生成全流程。告别代码恐惧,业务人员也能轻松掌握数据分析,提升职场竞争力。
291 0
|
5月前
|
人工智能 编解码 数据可视化
AI创作更自由: 魔搭FLowBench云端工作流上线AIGC专区!支持QwenImageEdit免费出图!
很高兴向大家宣布,ModelScope AIGC 专区的工作流功能正式上线!
1017 22
|
7月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
944 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
6月前
|
机器学习/深度学习 数据采集 人工智能
阿里开源即封神,一上线就斩获4000+ star背后的真相,WebAgent多步骤智能网搜神器,颠覆你对AI的信息检索印象!
WebAgent 是阿里巴巴开源的多步骤智能网搜神器,包含 WebWalker、WebDancer、WebSailor 等模块,支持复杂推理与长上下文信息检索,GitHub 已获 4.7k star,颠覆传统 AI 搜索方式。
844 1
|
7月前
|
人工智能 安全 Linux

热门文章

最新文章