你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!

概述

PowerJob是新一代分布式任务调度与计算框架,支持CRON、API、固定频率、固定延迟等调度策略,提供工作流来编排任务解决依赖关系,能让您轻松完成作业的调度与繁杂任务的分布式计算。


为什么选择PowerJob?

当前市面上流行的作业调度框架有老牌的Quartz、基于Quartz的elastic-job和原先基于Quartz后面移除依赖的xxl-job,这里分别谈一些这些框架现存的缺点。


Quartz可以视为第一代任务调度框架,基本上是现有所有分布式调度框架的“祖宗”。由于历史原因,它不提供Web界面,只能通过API完成任务的配置,使用起来不够方便和灵活,同时它仅支持单机执行,无法有效利用整个集群的计算能力。


xxl-job可以视为第二代任务调度框架,在一定程度上解决了Quartz的不足,在过去几年中是个非常优秀的调度框架,不过放到今天来看,还是存在着一些不足的,具体如下:


  • 数据库支持单一: 仅支持MySQL,使用其他DB需要自己魔改代码
  • 有限的分布式计算能力: 仅支持静态分片,无法很好的完成复杂任务的计算
  • 不支持工作流: 无法配置各个任务之间的依赖关系,不适用于有DAG需求的场景


正所谓长江后浪推前浪,在如今这个数据量日益增长、业务越来越复杂的年代,急需一款更为强大的任务调度框架来解决上诉问题,而PowerJob因此应运而生。


PowerJob可以被认为是第三代任务调度框架,在任务调度的基础上,还额外提供了分布式计算和工作流功能,其主要特性如下:


  • 使用简单: 提供前端Web界面,允许开发者可视化地完成调度任务的管理(增、删、改、查)、任务运行状态监控和运行日志查看等功能。
  • 定时策略完善: 支持CRON表达式、固定频率、固定延迟和API四种定时调度策略。
  • 执行模式丰富: 支持单机、广播、Map、MapReduce四种执行模式,其中Map/MapReduce处理器能使开发者寥寥数行代码便获得集群分布式计算的能力。
  • DAG工作流支持: 支持在线配置任务依赖关系,可视化得对任务进行编排,同时还支持上下游任务间的数据传递
  • 执行器支持广泛: 支持Spring Bean、内置/外置Java类、Shell、Python等处理器,应用范围广。
  • 运维便捷: 支持在线日志功能,执行器产生的日志可以在前端控制台页面实时显示,降低debug成本,极大地提高开发效率。
  • 依赖精简: 最小仅依赖关系型数据库(MySQL/PostgreSQL/Oracle/MS SQLServer…),同时支持所有Spring Data JPA所支持的关系型数据库。
  • 高可用&高性能: 调度服务器经过精心设计,一改其他调度框架基于数据库锁的策略,实现了无锁化调度。部署多个调度服务器可以同时实现高可用和性能的提升(支持无限的水平扩展)。
  • 故障转移与恢复: 任务执行失败后,可根据配置的重试策略完成重试,只要执行器集群有足够的计算节点,任务就能顺利完成。


同类产品对比

image.png


适用场景

有定时执行需求的业务场景:如每天凌晨全量同步数据、生成业务报表等。


有需要全部机器一同执行的业务场景:如使用广播执行模式清理集群日志。


有需要分布式处理的业务场景:比如需要更新一大批数据,单机执行耗时非常长,可以使用Map/MapReduce处理器完成任务的分发,调动整个集群加速计算。


整体架构


image.png

快速开始

PowerJob由调度服务器(powerjob-server)和执行器(powerjob-worker)两部分组成,powerjob-server负责提供Web服务和完成任务的调度,powerjob-worker则负责执行用户所编写的任务代码,同时提供分布式计算能力。


初始化项目

Spring Boot 基础就不介绍了,推荐看这个免费教程:


https://github.com/javastacks/spring-boot-best-practice


git clone https://github.com/KFCFans/PowerJob.git

导入 IDE,源码结构如下,我们需要启动调度服务器(powerjob-server),同时在samples工程中编写自己的处理器代码


image.png


启动调度服务器

创建数据库 powerjob-daily


修改配置文件,配置文件的说明官方文档写的非常详细,此处不再赘述。需要修改的地方为数据库配置spring.datasource.core.jdbc-url、spring.datasource.core.username和spring.datasource.core.password,当然,有mongoDB的同学也可以修改spring.data.mongodb.uri以获取完全版体验。

oms.env=DAILY
logging.config=classpath:logback-dev.xml
####### 数据库配置 #######
spring.datasource.core.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.core.jdbc-url=jdbc:mysql://remotehost:3306/powerjob-daily?useUnicode=true&characterEncoding=UTF-8
spring.datasource.core.username=root
spring.datasource.core.password=No1Bug2Please3!
spring.datasource.core.hikari.maximum-pool-size=20
spring.datasource.core.hikari.minimum-idle=5
####### mongoDB配置,非核心依赖,可移除 #######
spring.data.mongodb.uri=mongodb://remotehost:27017/powerjob-daily
####### 邮件配置(启用邮件报警则需要) #######
spring.mail.host=smtp.163.com
spring.mail.username=zqq
spring.mail.password=qqz
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
####### 资源清理配置 #######
oms.log.retention.local=1
oms.log.retention.remote=1
oms.container.retention.local=1
oms.container.retention.remote=-1
oms.instanceinfo.retention=1
####### 缓存配置 #######
oms.instance.metadata.cache.size=1024


完成配置文件的修改后,可以直接通过启动类com.github.kfcfans.powerjob.server.OhMyApplication启动调度服务器,观察启动日志,查看是否启动成功~启动成功后,访问 http://127.0.0.1:7700/,如果能顺利出现Web界面,则说明调度服务器启动成功!


注册应用:点击主页应用注册按钮,填入 oms-test和控制台密码(用于进入控制台),注册示例应用(当然你也可以注册其他的appName,只是别忘记在示例程序中同步修改~)


image.png


编写示例代码

进入示例工程(powerjob-worker-samples),修改配置文件连接powerjob-server并编写自己的处理器代码。


修改powerjob-worker-samples的启动配置类com.github.kfcfans.powerjob.samples.OhMySchedulerConfig,将AppName修改为刚刚在控制台注册的名称。

@Configuration
public class OhMySchedulerConfig {
    @Bean
    public OhMyWorker initOMS() throws Exception {
        // 服务器HTTP地址(端口号为 server.port,而不是 ActorSystem port)
        List<String> serverAddress = Lists.newArrayList("127.0.0.1:7700");
        // 1. 创建配置文件
        OhMyConfig config = new OhMyConfig();
        config.setPort(27777);
        config.setAppName("oms-test");
        config.setServerAddress(serverAddress);
        // 如果没有大型 Map/MapReduce 的需求,建议使用内存来加速计算
        config.setStoreStrategy(StoreStrategy.MEMORY);
        // 2. 创建 Worker 对象,设置配置文件
        OhMyWorker ohMyWorker = new OhMyWorker();
        ohMyWorker.setConfig(config);
        return ohMyWorker;
    }
}

编写自己的处理器:随便找个地方新建类,继承你想要使用的处理器(各个处理器的介绍可见官方文档,文档非常详细),这里为了简单演示,选择使用单机处理器BasicProcessor,以下是代码示例。


@Slf4j
@Component
public class StandaloneProcessorDemo implements BasicProcessor {
    @Override
    public ProcessResult process(TaskContext context) throws Exception {
        OmsLogger omsLogger = context.getOmsLogger();
        omsLogger.info("StandaloneProcessorDemo start process,context is {}.", context);
        System.out.println("jobParams is " + context.getJobParams());
        return new ProcessResult(true, "process successfully~");
    }
}




启动示例程序,即直接运行主类com.github.kfcfans.powerjob.samples.SampleApplication,观察控制台输出信息,判断是否启动成功。


任务的配置与运行

调度服务器与示例工程都启动完毕后,再次前往Web页面( http://127.0.0.1:7700/ ),进行任务的配置与运行。


在首页输入框输入配置的应用名称,成功操作后会正式进入前端管理界面。


image.png


点击任务管理 -> 新建任务(右上角),开始创建任务。


image.png


完成任务创建后,即可在控制台看到刚才创建的任务,如果觉得等待调度太过于漫长,可以直接点击运行按钮,立即运行本任务。


image.png


前往任务示例边栏,查看任务的运行状态和在线日志


image.png


基础的教程到这里也就结束了~更多功能示例可见官方文档,工作流、MapReduce、容器等高级特性等你来探索。


开源地址:https://github.com/PowerJob/PowerJob



相关文章
|
6月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
548 0
分布式爬虫框架Scrapy-Redis实战指南
|
4月前
|
监控 Java 调度
SpringBoot中@Scheduled和Quartz的区别是什么?分布式定时任务框架选型实战
本文对比分析了SpringBoot中的`@Scheduled`与Quartz定时任务框架。`@Scheduled`轻量易用,适合单机简单场景,但存在多实例重复执行、无持久化等缺陷;Quartz功能强大,支持分布式调度、任务持久化、动态调整和失败重试,适用于复杂企业级需求。文章通过特性对比、代码示例及常见问题解答,帮助开发者理解两者差异,合理选择方案。记住口诀:单机简单用注解,多节点上Quartz;若是任务要可靠,持久化配置不能少。
422 4
|
9月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
3109 66
|
8月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
342 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
8月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
363 8
|
9月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
303 2
|
10月前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
187 1
|
14天前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
|
2月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
2月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
98 8

热门文章

最新文章