基于模板和形态学处理的车牌检测分割和识别matlab仿真,可以识别其中的一个英文字母和所有数字

简介: 基于模板和形态学处理的车牌检测分割和识别matlab仿真,可以识别其中的一个英文字母和所有数字

1.算法描述

   车牌识别系统(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。

   车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,最新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安局建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。

车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

   随着交通现代化的发展要求,汽车牌照自动识别技术已经越来越受到人们的重视。车牌自动识别技术中车牌定位、字符切割、字符识别及后期处理是其关键技术。由于受到运算速度及内存大小的限制,以往的车牌识别大都是基于灰度图象处理的识别技术。其中首先要求正确可靠地检出车牌区域,为此提出了许多方法,如Hough变换以检测直线来提取车牌边界区域、使用灰度分割及区域生长进行区域分割,或使用纹理特征分析技术等。Hough变换方法对车牌区域变形或图象被污损时失效的可能性会大大增加,而灰度分割则比直线检测的方法要稳定,但当图象在有许多与车牌的灰度非常相似的区域时,该方法也就无能为力了。纹理分析在遇到类似车牌纹理特征的其他干扰时,车牌定位正确率也会受到影响。本文提出基于车牌彩色信息的彩色分割方法。

   主要模块如下:颜色信息提取、车牌区域定位、识别、提取、检测倾斜度、车牌校正、车牌区域二值化、擦除干扰区域、文字分割、模版匹配、结果输出。

1 颜色信息提取

    针对家庭小型车蓝底白字车牌进行识别。根据彩色图像的RGB比例定位出近似蓝色的候选区域。但是由于RGB三原色空间中两点间的欧氏距离与颜色距离不成线性比例,在设定蓝色区域的定位范围时不能很好的控制。因此造成的定位出错是最主要的。这样在图片中出现较多的蓝色背景情况下识别率会下降,不能有效提取车牌区域。

2 倾斜校正

   针对倾斜角度的图片采取rando算法进行倾斜角度计算,并对倾斜图片进行修正,从而得到与水平方向一致的图片,有利于后期的图片分割及图像识别。

3.字符分割

   计算得到车牌区域分割后的图象,对其白色像素进行水平垂直投影,并计算水平垂直峰值,检测合理的字符高宽比。可用与区域分割相同的方法进行峰值的删除与合并。但在字符分割时,往往由于阈值取得不好,导致字符分割不准确。针对这种情况,可以由车牌格式的先验知识,对分割出的字符宽度进行统计分析,用以指导分割,对因错误分割过宽的字符进行分裂处理。

​​​​​​​4.字体识别

    常用做法是采用神经网络模型对系统进行训练。但是这种做法增加了系统的复杂度,对实时性要求较高的场合不适应。这里采用简单模版匹配算法。由于在前期的有效处理使得分割后的字体清晰度完整度都能保持较高的水平。有利于提高模版匹配的成功率。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png
4.png

3.MATLAB核心程序

%=====================读入图片================================
[fn,pn,fi]=uigetfile('*.jpg','选择图片');
I=imread([pn fn]);figure(1),imshow(I);title('原始图像');%显示原始图像
chepailujing=[pn fn]
I_bai=I;
[PY2,PY1,PX2,PX1]=caitu_fenge(I);
%===============车牌区域根据面积二次修正======================
[PY2,PY1,PX2,PX1,threshold]=SEC_xiuzheng(PY2,PY1,PX2,PX1);
%==============更新图片=============================
 
Plate=I_bai(PY1:PY2,PX1:PX2,:);%使用caitu_tiqu
%==============考虑用腐蚀解决蓝色车问题=============
bw=Plate;figure(2),subplot(331),imshow(bw);title('车牌图像');%hsv彩图提取图像
%==============这里要根据图像的倾斜度进行选择
bw=rgb2gray(bw);subplot(332),imshow(bw);title('灰度图像');
%================倾斜校正======================
qingxiejiao=rando_bianhuan(bw)
bw=imrotate(bw,qingxiejiao,'bilinear','crop');subplot(333),imshow(bw);title('倾斜校正');%取值为负值向右旋转
%==============================================
bw=im2bw(bw,graythresh(bw));subplot(334),imshow(bw);title('二值化');
%==========================================================
bw=~bw;subplot(335),imshow(bw);title('擦除反色'); 
%=============对图像进一步裁剪,保证边框贴近字体===========
bw=touying(bw);subplot(336);imshow(bw);title('Y方向处理');
bw=~bw;
bw = bwareaopen(bw, threshold);
bw=~bw;subplot(337),imshow(bw);title('二次擦除');
[y,x]=size(bw);%对长宽重新赋值
%=================文字分割=================================
fenge=shuzifenge(bw,qingxiejiao)
[m,k]=size(fenge);
%=================显示分割图像结果========================= 
figure(3);
for s=1:2:k-1
    subplot(1,k/2,(s+1)/2);imshow(bw( 1:y,fenge(s):fenge(s+1)));
end
%================ 给五张图片定位===============
zm_sz_1 =bw( 1:y,fenge(5):fenge(6));
zm_sz_2 =bw( 1:y,fenge(7):fenge(8));
shuzi_1 =bw( 1:y,fenge(9):fenge(10)); 
shuzi_2 =bw( 1:y,fenge(11):fenge(12)); 
shuzi_3 =bw( 1:y,fenge(13):fenge(14)); 
%==========================识别====================================
%======================把修正数据读入==============================
xiuzhengzm_sz_1=  imresize(zm_sz_1,[110 55],'bilinear');  %调整大小
xiuzhengzm_sz_2 = imresize(zm_sz_2,[110 55],'bilinear');
xiuzhengshuzi_1 = imresize(shuzi_1,[110 55],'bilinear');
xiuzhengshuzi_2 = imresize(shuzi_2,[110 55],'bilinear');
xiuzhengshuzi_3 = imresize(shuzi_3,[110 55],'bilinear');
%============ 把0-9 的数据存储方便访问====================
%hanzishengfen=duquhanzi(imread('cpgui.bmp'),imread('cpguizhou.bmp'),imread('cpjing.bmp'),imread('cpsu.bmp'),imread('cpyue.bmp'));
%因数字和字母比例不同。这里要修改
shuzizimu=duquszzm(imread('0.bmp'),imread('1.bmp'),imread('2.bmp'),imread('3.bmp'),imread('4.bmp'),...
                   imread('5.bmp'),imread('6.bmp'),imread('7.bmp'),imread('8.bmp'),imread('9.bmp'),...
                   imread('10.bmp'),imread('11.bmp'),imread('12.bmp'),imread('13.bmp'),imread('14.bmp'),...
                   imread('15.bmp'),imread('16.bmp'),imread('17.bmp'),imread('18.bmp'),imread('19.bmp'),...
                   imread('20.bmp'),imread('21.bmp'),imread('22.bmp'),imread('23.bmp'),imread('24.bmp'),...
                   imread('25.bmp'),imread('26.bmp'),imread('27.bmp'),imread('28.bmp'),imread('29.bmp'),...
                   imread('30.bmp'),imread('31.bmp'),imread('32.bmp'),imread('33.bmp'));
shuzi = duqushuzi(imread('0.bmp'),imread('1.bmp'),imread('2.bmp'),imread('3.bmp'),imread('4.bmp'),...
                 imread('5.bmp'),imread('6.bmp'),imread('7.bmp'),imread('8.bmp'),imread('9.bmp')); 
相关文章
|
14天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
14天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
20天前
|
机器学习/深度学习 算法 安全
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
|
20天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
20天前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
112 0
|
24天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
24天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
143 14
|
20天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
24天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 传感器 算法
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
127 5

热门文章

最新文章