Python版本数据探查的一些方法和Demo

简介: 探查度量值是数据分析中至关重要的一步,它可以帮助我们了解数据类型、发现异常值、理解数据分布、提供数据参考等。这些信息对于我们进一步的数据处理和分析都至关重要。使用Python中的Pandas和PyTorch等工具,我们可以快速实现数据类型确定、描述性分析和探索性数据分析。

确定数据类型

在数据分析中,了解数据的类型是非常重要的,因为不同类型的数据需要采取不同的处理方法。例如,数值类型的数据可以进行加减乘除等计算,而字符串类型的数据则不能。因此,在开始分析数据之前,我们需要先确定数据的类型,以便后续的处理和分析。

在Python中,我们可以使用Pandas中的dtypes方法来查看每列数据的类型。通过观察每列的数据类型,我们可以对数据有一个初步的了解,并决定接下来采取哪些处理方式。

同时,在Pandas中还有一个astype()方法,可以将数据类型转换为需要的类型。例如,我们可能会将数值类型的数据转换为整型或浮点型,将日期类型的数据转换为日期格式等。astype()方法可以帮助我们快速地进行数据类型转换,让数据变得更加容易处理和分析。

importpandasaspd# 读取CSV文件df=pd.read_csv('data.csv')
# 查看每列数据类型print(df.dtypes)
# 将“age”列的数据类型转换为整型df['age'] =df['age'].astype(int)
# 将“date”列的数据类型转换为日期格式df['date'] =pd.to_datetime(df['date'])
# 再次查看每列数据类型print(df.dtypes)

在这个示例中,我们首先使用Pandas中的read_csv()方法读取了一个CSV文件,并将其存储在一个DataFrame对象中。然后,我们使用dtypes方法查看了每列的数据类型,并发现“age”列的数据类型是字符串,而“date”列的数据类型是对象。

接下来,我们使用astype()方法将“age”列的数据类型转换为整型,使用pd.to_datetime()方法将“date”列的数据类型转换为日期格式。最后,我们再次使用dtypes方法查看每列数据类型,并发现“age”列的数据类型已经被成功地转换为整型,而“date”列的数据类型已经被成功地转换为日期格式。

描述性分析

对于描述性统计,我们可以使用describe()方法来获取数据的计数、平均数、标准差、最小值、最大值、中位数和分位数等信息。这些信息可以帮助我们了解数据的分布特征。

importpandasaspd# 创建一个示例数据集data= {'age': [25, 32, 18, 47, 33, 29, 20, 27, 39, 51],
'income': [5000, 8000, 2000, 12000, 9000, 7000, 3000, 6000, 10000, 15000]}
df=pd.DataFrame(data)
# 使用describe()方法获取描述性统计信息desc=df.describe()
# 打印结果print(desc)

上述代码创建了一个包含年龄和收入数据的DataFrame对象,并使用describe()方法获取了数据的描述性统计信息。执行结果如下:

ageincomecount10.00000010.000000mean32.2000007800.000000std11.5739974066.301815min18.0000002000.00000025%25.5000005250.00000050%30.5000007500.00000075%39.0000009750.000000max51.00000015000.000000

Plot绘图

通过绘制直方图、箱线图、散点图等可视化图表,我们可以更好地了解数据的分布情况。在Pandas中,我们可以使用plot()方法来快速生成这些图表,在Pandas官网有一个鸢尾花的示例,这里的代码基本与其类似,建议初学者可以在官网的示例下实操。

首先,我们需要导入Pandas库,并使用read_csv()方法读取数据。在这个例子中,我们将使用一个关于鸢尾花的数据集:

importpandasaspd# 读取鸢尾花数据集iris=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None, names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])

接下来,我们可以使用plot()方法绘制直方图。在这个例子中,我们将绘制花瓣长度的直方图:

# 绘制花瓣长度的直方图iris['petal_length'].plot(kind='hist', bins=10, title='Histogram of Petal Length')

这将生成一个花瓣长度的直方图,其中x轴表示花瓣长度,y轴表示频数。参数kind指定图表类型为直方图,bins指定分箱数量,title为图表标题。

接下来,我们可以使用plot()方法绘制箱线图。在这个例子中,我们将绘制花萼宽度的箱线图:

# 绘制花萼宽度的箱线图iris['sepal_width'].plot(kind='box', title='Boxplot of Sepal Width')

这将生成一个花萼宽度的箱线图,其中箱体表示25%分位数到75%分位数之间的数据,中位数用横线表示,须表示数据分布的范围。

最后,我们可以使用plot()方法绘制散点图。在这个例子中,我们将绘制花萼长度与花萼宽度的散点图:

# 绘制花萼长度与花萼宽度的散点图iris.plot(kind='scatter', x='sepal_length', y='sepal_width', title='Scatterplot of Sepal Length vs Sepal Width')

这将生成一个花萼长度与花萼宽度的散点图,其中x轴表示花萼长度,y轴表示花萼宽度,每个点表示一朵鸢尾花。

探索性分析

对于探索性数据分析,Pandas提供了许多方法,如isna()方法用于检查缺失值,fillna()方法用于填充缺失值,dropna()方法用于删除缺失值等。这些方法可以帮助我们更好地理解数据的问题和特征。

# 检查缺失值df.isna()
# 统计缺失值数量df.isna().sum()
# 将缺失值替换为0df.fillna(0)
# 使用平均值填充缺失值df.fillna(df.mean())
# 使用前一行的数据进行填充df.fillna(method='ffill')
# 删除包含缺失值的行df.dropna(axis=0)
# 删除包含缺失值的列df.dropna(axis=1)
# 根据特定的条件删除缺失值df.dropna(subset=['column_name'])

假设校验

假设检验是数据分析中非常重要的一环,它可以帮助我们验证假设并得出结论。在Python中,我们可以使用scipy.stats和torch.stats等统计库中的函数来进行假设检验,例如t检验、方差分析、卡方检验等。这些方法可以帮助我们判断两个样本的均值是否有显著差异、是否存在组间差异等问题。

假设检验需要结合具体的场景和数据进行分析,需要了解数据的特征和分布情况,以选择合适的检验方法和参数。在进行假设检验之前,我们需要对数据进行预处理和探索性数据分析,以确保数据符合假设检验的前提条件,避免产生错误的结论。

importpandasaspd# 读取数据data=pd.read_csv('data.csv')
# 假设检验fromscipy.statsimportttest_indgroup1=data[data['gender'] =='Male']['age']
group2=data[data['gender'] =='Female']['age']
t_stat, p_val=ttest_ind(group1, group2, equal_var=False)
ifp_val<0.05:
print("There is a significant difference between the age of male and female.")
else:
print("There is no significant difference between the age of male and female.")

我们使用了 Pandas 库来读取数据,然后使用 Scipy 库中的 ttest_ind 函数来进行两个样本的 T 检验,判断男性和女性之间的年龄是否有显著差异。如果 p 值小于 0.05,则认为男性和女性的年龄存在显著差异,否则认为没有显著差异。

目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
11天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
28天前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
69 21
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1月前
|
人工智能 Python
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
56 7
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控

热门文章

最新文章

推荐镜像

更多