【大数据开发运维解决方案】sqoop增量导入oracle/mysql数据到hive时时间字段为null处理

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 前面几篇文章详细介绍了sqoop全量增量导入数据到hive,大家可以看到我导入的数据如果有时间字段的话我都是在hive指定成了string类型,虽然这样可以处理掉时间字段在hive为空的问题,但是在kylin创建增量cube时需要指定一个时间字段来做增量,所以上面那种方式不行,这里的处理方式为把string改成timestamp类型,看实验:

前面几篇文章详细介绍了sqoop全量增量导入数据到hive,大家可以看到我导入的数据如果有时间字段的话我都是在hive指定成了string类型,虽然这样可以处理掉时间字段在hive为空的问题,但是在kylin创建增量cube时需要指定一个时间字段来做增量,所以上面那种方式不行,这里的处理方式为把string改成timestamp类型,看实验:

一、源库创建测试表

创建测试表:

create table INR_TR
(
  empno    NUMBER,
  ename    VARCHAR2(10),
  job      VARCHAR2(9),
  sal      NUMBER(7,2),
  etltime  DATE,
  hiredate VARCHAR2(20),
  birth    VARCHAR2(20)
);

初始化数据:

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (1, 'er', 'CLERK', 800.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (2, 'ALLEN', 'SALESMAN', 1600.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (3, 'WARD', 'SALESMAN', 1250.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (4, 'JONES', 'MANAGER', 2975.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (5, 'MARTIN', 'SALESMAN', 1250.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (6, 'zhao', 'DBA', 1000.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (7, 'yan', 'BI', 100.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (8, 'dong', 'JAVA', 400.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (9, 'test', 'test', 999.00, to_date('25-03-2019 18:54:39', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');
commit;

接下来去hive创建表,这里指定etltime 列数据类型为string,birth 字段指定为timestamp类型:

create table INR_TR
(
  empno   int,
  ename   string,
  job     string,
  sal     float,
  etltime string,
  hiredate int,
  birth    timestamp
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
location '/user/hive/warehouse/exter_inr_tr'; 

二、初始化

接下来通过sqoop对INR_TR做全量初始化:

[root@hadoop ~]# hadoop fs -rmr /user/hive/warehouse/exter_inr_tr
[root@hadoop ~]# sqoop import --connect jdbc:oracle:thin:@192.168.1.6:1521:orcl --direct --username scott --password tiger --query "SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE $CONDITIONS" -m 1 --target-dir /user/hive/warehouse/exter_inr_tr --fields-terminated-by '\t'
Warning: /hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
19/03/27 15:54:47 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
19/03/27 15:54:47 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
19/03/27 15:54:47 INFO oracle.OraOopManagerFactory: Data Connector for Oracle and Hadoop will not process this sqoop connection, as an insufficient number of mappers are being used.
19/03/27 15:54:47 INFO manager.SqlManager: Using default fetchSize of 1000
19/03/27 15:54:47 INFO tool.CodeGenTool: Beginning code generation
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hbase/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hive/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
19/03/27 15:54:48 INFO manager.OracleManager: Time zone has been set to GMT
19/03/27 15:54:48 INFO manager.SqlManager: Executing SQL statement: SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE (1 = 0)
19/03/27 15:54:48 INFO manager.SqlManager: Executing SQL statement: SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE (1 = 0)
19/03/27 15:54:48 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /hadoop
Note: /tmp/sqoop-root/compile/b958039e61f21d341fd0c9dc1d3d5ea5/QueryResult.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
19/03/27 15:54:51 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/b958039e61f21d341fd0c9dc1d3d5ea5/QueryResult.jar
19/03/27 15:54:51 INFO mapreduce.ImportJobBase: Beginning query import.
19/03/27 15:54:51 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
19/03/27 15:54:52 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
19/03/27 15:54:52 INFO client.RMProxy: Connecting to ResourceManager at /192.168.1.66:8032
19/03/27 15:54:56 INFO db.DBInputFormat: Using read commited transaction isolation
19/03/27 15:54:56 INFO mapreduce.JobSubmitter: number of splits:1
19/03/27 15:54:56 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1553650718296_0005
19/03/27 15:54:57 INFO impl.YarnClientImpl: Submitted application application_1553650718296_0005
19/03/27 15:54:57 INFO mapreduce.Job: The url to track the job: http://hadoop:8088/proxy/application_1553650718296_0005/
19/03/27 15:54:57 INFO mapreduce.Job: Running job: job_1553650718296_0005
19/03/27 15:55:06 INFO mapreduce.Job: Job job_1553650718296_0005 running in uber mode : false
19/03/27 15:55:06 INFO mapreduce.Job: map 0% reduce 0%
19/03/27 15:55:21 INFO mapreduce.Job: map 100% reduce 0%
19/03/27 15:55:22 INFO mapreduce.Job: Job job_1553650718296_0005 completed successfully
19/03/27 15:55:22 INFO mapreduce.Job: Counters: 30

File System Counters
    FILE: Number of bytes read=0
    FILE: Number of bytes written=144127
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=87
    HDFS: Number of bytes written=604
    HDFS: Number of read operations=4
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=2
Job Counters 
    Launched map tasks=1
    Other local map tasks=1
    Total time spent by all maps in occupied slots (ms)=11694
    Total time spent by all reduces in occupied slots (ms)=0
    Total time spent by all map tasks (ms)=11694
    Total vcore-milliseconds taken by all map tasks=11694
    Total megabyte-milliseconds taken by all map tasks=11974656
Map-Reduce Framework
    Map input records=9
    Map output records=9
    Input split bytes=87
    Spilled Records=0
    Failed Shuffles=0
    Merged Map outputs=0
    GC time elapsed (ms)=1462
    CPU time spent (ms)=10320
    Physical memory (bytes) snapshot=198336512
    Virtual memory (bytes) snapshot=2135072768
    Total committed heap usage (bytes)=96993280
File Input Format Counters 
    Bytes Read=0
File Output Format Counters 
    Bytes Written=604

19/03/27 15:55:22 INFO mapreduce.ImportJobBase: Transferred 604 bytes in 29.927 seconds (20.1825 bytes/sec)
19/03/27 15:55:22 INFO mapreduce.ImportJobBase: Retrieved 9 records.

看一下hdfs文件内容:

[root@hadoop ~]# hdfs dfs -cat /user/hive/warehouse/exter_inr_tr/part-m-00000
1    er    CLERK    800    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
2    ALLEN    SALESMAN    1600    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
3    WARD    SALESMAN    1250    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
4    JONES    MANAGER    2975    2019-03-22 17:24:42.0    2018    2018-03-27 00:00:00.0
5    MARTIN    SALESMAN    1250    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
6    zhao    DBA    1000    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00.0
7    yan    BI    100    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00.0
8    dong    JAVA    400    2019-03-22 17:24:42.0    2017    2017-03-28 00:00:00.0
9    test    test    999    2019-03-25 18:54:39.0    2018    2018-03-28 00:00:00.0

查一下hive表:

hive> select * from inr_tr;
OK
1    er    CLERK    800.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
2    ALLEN    SALESMAN    1600.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
3    WARD    SALESMAN    1250.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
4    JONES    MANAGER    2975.0    2019-03-22 17:24:42.0    2018    2018-03-27 00:00:00
5    MARTIN    SALESMAN    1250.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
6    zhao    DBA    1000.0    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00
7    yan    BI    100.0    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00
8    dong    JAVA    400.0    2019-03-22 17:24:42.0    2017    2017-03-28 00:00:00
9    test    test    999.0    2019-03-25 18:54:39.0    2018    2018-03-28 00:00:00

从上面结果已经能看到时间列已经是timestamp格式了。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
运维 自然语言处理 算法
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
333 3
|
4月前
|
Shell
Image provider: AssetImage(bundle: null, name: “assets/images/hot.png”) Image key: AssetBundleImageKey(bundle: PlatformAssetBundle#9d9f7(), name: “assets/images/hot.png”, scale: 1) 图像无法加载,并且其他图标图像也出错的解决方案-优雅草卓伊凡
Image provider: AssetImage(bundle: null, name: “assets/images/hot.png”) Image key: AssetBundleImageKey(bundle: PlatformAssetBundle#9d9f7(), name: “assets/images/hot.png”, scale: 1) 图像无法加载,并且其他图标图像也出错的解决方案-优雅草卓伊凡
60 12
|
5月前
|
关系型数据库 MySQL Linux
Linux下mysql数据库的导入与导出以及查看端口
本文详细介绍了在Linux下如何导入和导出MySQL数据库,以及查看MySQL运行端口的方法。通过这些操作,用户可以轻松进行数据库的备份与恢复,以及确认MySQL服务的运行状态和端口。掌握这些技能,对于日常数据库管理和维护非常重要。
222 8
|
5月前
|
JSON 前端开发 Java
【Bug合集】——Java大小写引起传参失败,获取值为null的解决方案
类中成员变量命名问题引起传送json字符串,但是变量为null的情况做出解释,@Data注解(Spring自动生成的get和set方法)和@JsonProperty
|
5月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
5月前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
7月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
284 10
|
7月前
|
SQL 存储 关系型数据库
SQL文件导入MySQL数据库的详细指南
数据库中的数据转移是一项常规任务,无论是在数据迁移过程中,还是在数据备份、还原场景中,导入导出SQL文件显得尤为重要。特别是在使用MySQL数据库时,如何将SQL文件导入数据库是一项基本技能。本文将详细介绍如何将SQL文件导入MySQL数据库,并提供一个清晰、完整的步骤指南。这篇文章的内容字数大约在
847 1
|
9月前
|
关系型数据库 MySQL 大数据
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
213 1
|
8月前
|
SQL 关系型数据库 MySQL
Python小技巧——将CSV文件导入到MySQL数据库
Python小技巧——将CSV文件导入到MySQL数据库
330 0

热门文章

最新文章

推荐镜像

更多