【大数据开发运维解决方案】sqoop增量导入oracle/mysql数据到hive时时间字段为null处理

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 前面几篇文章详细介绍了sqoop全量增量导入数据到hive,大家可以看到我导入的数据如果有时间字段的话我都是在hive指定成了string类型,虽然这样可以处理掉时间字段在hive为空的问题,但是在kylin创建增量cube时需要指定一个时间字段来做增量,所以上面那种方式不行,这里的处理方式为把string改成timestamp类型,看实验:

前面几篇文章详细介绍了sqoop全量增量导入数据到hive,大家可以看到我导入的数据如果有时间字段的话我都是在hive指定成了string类型,虽然这样可以处理掉时间字段在hive为空的问题,但是在kylin创建增量cube时需要指定一个时间字段来做增量,所以上面那种方式不行,这里的处理方式为把string改成timestamp类型,看实验:

一、源库创建测试表

创建测试表:

create table INR_TR
(
  empno    NUMBER,
  ename    VARCHAR2(10),
  job      VARCHAR2(9),
  sal      NUMBER(7,2),
  etltime  DATE,
  hiredate VARCHAR2(20),
  birth    VARCHAR2(20)
);

初始化数据:

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (1, 'er', 'CLERK', 800.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (2, 'ALLEN', 'SALESMAN', 1600.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (3, 'WARD', 'SALESMAN', 1250.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (4, 'JONES', 'MANAGER', 2975.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (5, 'MARTIN', 'SALESMAN', 1250.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-27');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (6, 'zhao', 'DBA', 1000.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (7, 'yan', 'BI', 100.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (8, 'dong', 'JAVA', 400.00, to_date('22-03-2019 17:24:42', 'dd-mm-yyyy hh24:mi:ss'), '2017', '2017-3-28');

insert into inr_tr (EMPNO, ENAME, JOB, SAL, ETLTIME, HIREDATE, BIRTH)
values (9, 'test', 'test', 999.00, to_date('25-03-2019 18:54:39', 'dd-mm-yyyy hh24:mi:ss'), '2018', '2018-3-28');
commit;

接下来去hive创建表,这里指定etltime 列数据类型为string,birth 字段指定为timestamp类型:

create table INR_TR
(
  empno   int,
  ename   string,
  job     string,
  sal     float,
  etltime string,
  hiredate int,
  birth    timestamp
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
location '/user/hive/warehouse/exter_inr_tr'; 

二、初始化

接下来通过sqoop对INR_TR做全量初始化:

[root@hadoop ~]# hadoop fs -rmr /user/hive/warehouse/exter_inr_tr
[root@hadoop ~]# sqoop import --connect jdbc:oracle:thin:@192.168.1.6:1521:orcl --direct --username scott --password tiger --query "SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE $CONDITIONS" -m 1 --target-dir /user/hive/warehouse/exter_inr_tr --fields-terminated-by '\t'
Warning: /hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
19/03/27 15:54:47 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
19/03/27 15:54:47 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
19/03/27 15:54:47 INFO oracle.OraOopManagerFactory: Data Connector for Oracle and Hadoop will not process this sqoop connection, as an insufficient number of mappers are being used.
19/03/27 15:54:47 INFO manager.SqlManager: Using default fetchSize of 1000
19/03/27 15:54:47 INFO tool.CodeGenTool: Beginning code generation
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hbase/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/hadoop/hive/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
19/03/27 15:54:48 INFO manager.OracleManager: Time zone has been set to GMT
19/03/27 15:54:48 INFO manager.SqlManager: Executing SQL statement: SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE (1 = 0)
19/03/27 15:54:48 INFO manager.SqlManager: Executing SQL statement: SELECT EMPNO,ENAME,JOB,SAL,ETLTIME,to_number(HIREDATE),to_date(BIRTH,'yyyy-mm-dd') FROM INR_TR WHERE (1 = 0)
19/03/27 15:54:48 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /hadoop
Note: /tmp/sqoop-root/compile/b958039e61f21d341fd0c9dc1d3d5ea5/QueryResult.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
19/03/27 15:54:51 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/b958039e61f21d341fd0c9dc1d3d5ea5/QueryResult.jar
19/03/27 15:54:51 INFO mapreduce.ImportJobBase: Beginning query import.
19/03/27 15:54:51 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
19/03/27 15:54:52 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
19/03/27 15:54:52 INFO client.RMProxy: Connecting to ResourceManager at /192.168.1.66:8032
19/03/27 15:54:56 INFO db.DBInputFormat: Using read commited transaction isolation
19/03/27 15:54:56 INFO mapreduce.JobSubmitter: number of splits:1
19/03/27 15:54:56 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1553650718296_0005
19/03/27 15:54:57 INFO impl.YarnClientImpl: Submitted application application_1553650718296_0005
19/03/27 15:54:57 INFO mapreduce.Job: The url to track the job: http://hadoop:8088/proxy/application_1553650718296_0005/
19/03/27 15:54:57 INFO mapreduce.Job: Running job: job_1553650718296_0005
19/03/27 15:55:06 INFO mapreduce.Job: Job job_1553650718296_0005 running in uber mode : false
19/03/27 15:55:06 INFO mapreduce.Job: map 0% reduce 0%
19/03/27 15:55:21 INFO mapreduce.Job: map 100% reduce 0%
19/03/27 15:55:22 INFO mapreduce.Job: Job job_1553650718296_0005 completed successfully
19/03/27 15:55:22 INFO mapreduce.Job: Counters: 30

File System Counters
    FILE: Number of bytes read=0
    FILE: Number of bytes written=144127
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=87
    HDFS: Number of bytes written=604
    HDFS: Number of read operations=4
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=2
Job Counters 
    Launched map tasks=1
    Other local map tasks=1
    Total time spent by all maps in occupied slots (ms)=11694
    Total time spent by all reduces in occupied slots (ms)=0
    Total time spent by all map tasks (ms)=11694
    Total vcore-milliseconds taken by all map tasks=11694
    Total megabyte-milliseconds taken by all map tasks=11974656
Map-Reduce Framework
    Map input records=9
    Map output records=9
    Input split bytes=87
    Spilled Records=0
    Failed Shuffles=0
    Merged Map outputs=0
    GC time elapsed (ms)=1462
    CPU time spent (ms)=10320
    Physical memory (bytes) snapshot=198336512
    Virtual memory (bytes) snapshot=2135072768
    Total committed heap usage (bytes)=96993280
File Input Format Counters 
    Bytes Read=0
File Output Format Counters 
    Bytes Written=604

19/03/27 15:55:22 INFO mapreduce.ImportJobBase: Transferred 604 bytes in 29.927 seconds (20.1825 bytes/sec)
19/03/27 15:55:22 INFO mapreduce.ImportJobBase: Retrieved 9 records.

看一下hdfs文件内容:

[root@hadoop ~]# hdfs dfs -cat /user/hive/warehouse/exter_inr_tr/part-m-00000
1    er    CLERK    800    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
2    ALLEN    SALESMAN    1600    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
3    WARD    SALESMAN    1250    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
4    JONES    MANAGER    2975    2019-03-22 17:24:42.0    2018    2018-03-27 00:00:00.0
5    MARTIN    SALESMAN    1250    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00.0
6    zhao    DBA    1000    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00.0
7    yan    BI    100    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00.0
8    dong    JAVA    400    2019-03-22 17:24:42.0    2017    2017-03-28 00:00:00.0
9    test    test    999    2019-03-25 18:54:39.0    2018    2018-03-28 00:00:00.0

查一下hive表:

hive> select * from inr_tr;
OK
1    er    CLERK    800.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
2    ALLEN    SALESMAN    1600.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
3    WARD    SALESMAN    1250.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
4    JONES    MANAGER    2975.0    2019-03-22 17:24:42.0    2018    2018-03-27 00:00:00
5    MARTIN    SALESMAN    1250.0    2019-03-22 17:24:42.0    2017    2017-03-27 00:00:00
6    zhao    DBA    1000.0    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00
7    yan    BI    100.0    2019-03-22 17:24:42.0    2018    2018-03-28 00:00:00
8    dong    JAVA    400.0    2019-03-22 17:24:42.0    2017    2017-03-28 00:00:00
9    test    test    999.0    2019-03-25 18:54:39.0    2018    2018-03-28 00:00:00

从上面结果已经能看到时间列已经是timestamp格式了。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4天前
|
存储 运维 安全
Spring运维之boot项目多环境(yaml 多文件 proerties)及分组管理与开发控制
通过以上措施,可以保证Spring Boot项目的配置管理在专业水准上,并且易于维护和管理,符合搜索引擎收录标准。
14 2
|
1月前
|
运维 Java Linux
【运维基础知识】掌握VI编辑器:提升你的Java开发效率
本文详细介绍了VI编辑器的常用命令,包括模式切换、文本编辑、搜索替换及退出操作,帮助Java开发者提高在Linux环境下的编码效率。掌握这些命令,将使你在开发过程中更加得心应手。
32 2
|
30天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
38 0
|
2月前
|
存储 JSON BI
关于建表字段是否该使用not null这个问题你怎么看?
V哥分享了在数据库设计中使用 `NOT NULL` 的重要性及应用场景。关键字段如用户名和邮箱应设为 `NOT NULL` 以确保数据完整性;可选字段如中间名和个人资料图片允许 `NULL` 提供更多灵活性。`NULL` 还可用于表示未知状态,如未发货的订单。外键设计需根据业务逻辑决定是否使用 `NOT NULL`。此外,`NOT NULL` 可优化查询性能,但在扩展性和数据兼容性方面,允许 `NULL` 更具优势。结合业务需求和数据统计,合理使用 `NOT NULL` 可确保数据完整性和灵活性。
|
2月前
|
SQL 数据库 HIVE
hive数仓 ods层增量数据导入
根据业务需求,当表数据量超过10万条时采用增量数据导入,否则全量导入。增量导入基于`create_date`和`modify_date`字段进行,并确保时间字段已建立索引以提升查询效率。避免在索引字段上执行函数操作。创建增量表和全量表,并按日期进行分区。首次导入全量数据,后续每日新增或变更数据保存在增量表中,通过全量表与增量表的合并保持数据一致性。
89 13
|
2月前
|
SQL JavaScript 前端开发
用Java来开发Hive应用
用Java来开发Hive应用
35 7
|
2月前
|
SQL JavaScript 前端开发
用Java、Python来开发Hive应用
用Java、Python来开发Hive应用
33 6
|
3月前
|
运维 Devops 持续交付
自动化运维之路:从脚本到DevOps探索后端开发:从基础到高级实践
【8月更文挑战第28天】在数字化时代的浪潮中,企业对于IT运维的要求越来越高。从最初的手动执行脚本,到如今的自动化运维和DevOps实践,本文将带你领略运维的演变之旅。我们将探索如何通过编写简单的自动化脚本来提升效率,进而介绍DevOps文化的兴起及其对现代运维的影响。文章将为你揭示,通过持续集成、持续部署和微服务架构的实践,如何构建一个高效、可靠的运维体系。准备好让你的运维工作变得更加智能化和自动化了吗?让我们一起踏上这段旅程。 【8月更文挑战第28天】 本文旨在为初学者和有一定经验的开发者提供一个深入浅出的后端开发之旅。我们将一起探索后端开发的多个方面,包括语言选择、框架应用、数据库设计
|
3月前
|
SQL 关系型数据库 MySQL
mysql不等于<>取特定值反向条件的时候字段有null值或空值读取不到数据
对于数据库开发的专业人士来说,理解NULL的特性并知道如何正确地在查询中处理它们是非常重要的。以上所介绍的技巧和实例可以帮助你更精准地执行数据库查询,并确保数据的完整性和准确性。在编写代码和设计数据库结构时,牢记这些细节将有助于你避免许多常见的错误,提高数据库应用的质量与性能。
119 0
|
3月前
|
运维 Devops 数据库
太卷了!DevOps,就是开发要把运维卷跑了?
太卷了!DevOps,就是开发要把运维卷跑了?

推荐镜像

更多