机器学习模型的性能评估方法

简介: 机器学习模型的性能评估方法

动动发财的小手,点个赞吧!

部署模型后,监控其性能对于确保 ML 系统的质量起着至关重要的作用。要计算准确度、精确度、召回率或 f1 分数等指标,需要标签。但是,在许多情况下,标签可能不可用、部分可用或延迟提供。在这些情况下,估计模型性能的能力会很有帮助。

在这篇文章中,将讨论在没有真实数据的情况下估计性能的可能方法。

1. NannyML

NannyML 是一个 Python 包,用于检测静默模型故障、估计没有标记数据的部署后性能以及检测数据漂移。目前,NannyML 有两种性能估计方法:Confidence-based Performance Estimation (CBPE) 和 Direct Loss Estimation (DLE)。

2. 基于置信度的性能估计

顾名思义,此方法利用模型预测的置信度分数来执行性能估计。

  • 注意事项:

    • 置信度作为概率:置信度分数应该代表概率——例如如果大量观察的分数为 0.9,则大约 90% 的时间都是正确的。
    • 良好校准的概率:另一个要求是分数应该经过良好校准,但情况可能并非总是如此。好消息是,如果需要,NannyML 会在内部执行校准。
    • 没有协变量转移到空间中以前看不见的区域:例如,如果您的模型是针对 10-70 岁的人进行训练的,并且在生产中,您的观察对象是 70 岁以上的人,则这种方法可能无法提供可靠的估计
    • 没有概念漂移:如果模型的输入和目标之间的关系发生变化,这种方法可能无法提供可靠的估计(我个人不知道有什么方法可以)
    • 不适合回归模型:回归模型通常不会固有地输出置信度分数,只会输出实际的预测,这使得这种方法的使用对于这种情况来说并非易事。

3. 直接损失估算

这种方法背后的直觉是训练一个额外的 ML 模型,其任务是估计监控模型的损失。额外的模型称为 Nanny 模型,而受监控的模型是 Child 模型。

  • 注意事项:

    • 额外模型:需要训练额外的模型来估计原始模型的损失,这会增加系统的复杂性。但是,模型不必比原始模型好,在许多情况下,它可以是一个简单的过程。
    • 适合回归:这种方法非常适合回归任务。例如,可以训练保姆模型来预测 MSE(均方误差)或 MAE(平均绝对误差)。
    • 没有协变量转移到空间中以前看不见的区域:对 CBPE 所做的相同考虑也适用于此方法
    • 无概念漂移:对 CBPE 所做的相同考虑也适用于此方法
    • 具有不同性能的区域:受监控模型在不同区域应具有不同的性能。例如,如果您的模型根据一天中不同季节的不同时段表现得更好或更差。
目录
打赏
0
0
0
0
331
分享
相关文章
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
118 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
202 6
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
317 13
机器学习算法的优化与改进:提升模型性能的策略与方法
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
149 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
134 8
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
76 6
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
52 1
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
264 1
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
56 14

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等