图像的双边滤波matlab仿真

简介: 图像的双边滤波matlab仿真

1.算法描述

   图像去噪是用于解决图像由于噪声干扰而导致其质量下降的问题,通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息。在我们的图像中常见的噪声主要有以下4种:加性噪声、乘性噪声、量化噪声、椒盐噪声。根据不同的噪声特点,我们可以采用不同的去噪算法,按照数学运算主要分为两大类,一类是通过滤波(相当于积分的过程),又可以在空域(和频率域(傅立叶变换和小波变换)中分别采用此操作,比如说空域中值滤波对于椒盐噪声有很好的处理效果,另一类是通过偏微分方程,具有各向异性的特点,具有平滑图像和将边缘尖锐化的能力,在低噪声密度的图像处理中取得了较好的效果,但是在处理高噪声密度图像时去噪效果不好。

   普通的时空域的低通滤波器,在像素空间完成滤波以后,导致图像的边缘部分也变得不那么明显,整张图像都变得同样的模糊,图像边缘细节丢失。双边滤波器(ABilateral Filter)可以很好的保留边缘的同时消除噪声。双边滤波器能做到这些原因在于它不像普通的高斯/卷积低通滤波,只考虑了位置对中心像素的影响,它还考虑了卷积核中像素与中心像素之间相似程度的影响,根据位置影响与像素值之间的相似程度生成两个不同的权重表(WeightTable),在计算中心像素的时候加以考虑这两个权重,从而实现双边低通滤波。据说AdobePhotoshop的高斯磨皮功能就是应用了双边低通滤波算法实现。

   双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。

   双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

   双边滤波之所以能够既作平滑处理又保留边界,是因为它综合了高斯滤波器和α-截尾均值滤波器的特点,同时考虑了空间域与值域,即其核是由空间域核和值域核相乘得到。滤波算法中,目标点上的像素值通常是由其所在位置上的周围的一个小局部邻居像素的值所决定。在2D高斯滤波中的具体实现就是对周围的一定范围内的像素值分别赋以不同的高斯权重值,并在加权平均后得到当前点的最终结果。而这里的高斯权重因子是利用两个像素之间的空间距离(在图像中为2D)关系来生成。通过高斯分布的曲线可以发现,离目标像素越近的点对最终结果的贡献越大,反之则越小。其公式化的描述一般如下所述:

1b7a810efe890aec01e7234e6927aab8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  高斯滤波在低通滤波算法中有不错的表现,但是其却有另外一个问题,那就是只考虑了像素间的空间位置上的关系,因此滤波的结果会丢失边缘的信息。这里的边缘主要是指图像中主要的不同颜色区域(比如蓝色的天空,黑色的头发等),而Bilateral就是在Gaussian blur中加入了另外的一个权重分部来解决这一问题。Bilateral滤波中对于边缘的保持通过下述表达式来实现:

3121d807d47f5a7db4b716ffe7a7d0e8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,

2d6b09f4697101fcff45d3c2d5c662b4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

权重系数w(i,j,k,l)取决于定义域核
d4738059e2905e679b1ec8b66b7fb08f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

和值域核

9d0e7f6000692b2b8995415833a0c540_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
5c6baa08637c8421d40d8e1eebda25af_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

的乘积同时考虑了空间域与值域的差别。一般过去用的维纳滤波或者高斯滤波去降噪,只考虑了空间域差别,都会较明显地模糊边缘,对于高频细节的保护效果并不明显;α-截尾均值滤波器,去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器,只考虑了值域差别。

2.仿真效果预览
matlab2022a仿真结果如下:

e96583bc491395bd76c214bb4fb76d5b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
542b4444184b21cdd1f11fb2deb651b7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

[m, n] = size(Img);
 
% create noisy image (additive Gaussian noise)
sigma  =  20;
inImg  =  Img + sigma * randn(m, n);
 
% filter parameters
sigma1 = 4;
sigma2 = 30;
tol        = 0.01;
 
% Set window for spatial Gaussian
w  = 6*sigma1;
if (mod(w,2) == 0)
    w  = w+1;
end
 
% call bilateral filter
tic;
[outImg, param] =  shiftableBF(inImg, sigma1, sigma2, w, tol);
toc;
 
% plot results
T  = param.T;
N  = param.N;
M  = param.M;
gamma  =  1 / (sqrt(N) * sigma2);
twoN   =  2^N;
 
warning('off'); %#ok<WNOFF>
 
s  = linspace(-T, T, 200);
g  = exp( -s.^2 / (2 * sigma2 *sigma2) );
gApprox  = cos(gamma * s).^N;
if M ==  0
    gTrunc = gApprox;
else
    gTrunc = zeros( 1, length(s) );
    for k = M : N - M
        gTrunc = gTrunc + (nchoosek(N, k) / twoN) * ...
            cos( (2*k - N) * gamma * s  );
    end
end
 
figure('Units','normalized','Position',[0 0.5 1 0.5]);
plot(s, g, 'b');
hold on,
plot(s, gApprox, 'm'),
hold on,
plot(s, gTrunc, 'r');
axis('tight'), grid('on'),
legend('Gassian','Raised cosine','Truncated raised cosine','FontSize', 10);
title('Comparison of the range kernels', 'FontSize', 10),
 
peak  = 255;
PSNR0 = 10 * log10(m * n * peak^2 / sum(sum( (inImg - Img).^2)) );
PSNR1 = 10 * log10(m * n * peak^2 / sum(sum((outImg - Img).^2)) );
相关文章
|
3天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
12天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
3天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
9天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
12天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
10天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
15天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
基于毕奥-萨伐尔定律的交流电机的4极旋转磁场matlab模拟与仿真
本课题基于毕奥-萨伐尔定律研究交流电机的4极旋转磁场,对比不同定子半径和2极旋转磁场。通过MATLAB2022a进行仿真,核心程序计算每个导线对空间点的磁场贡献,并绘制磁场分布。毕奥-萨伐尔定律描述了电流元产生的磁场分布,对于理解交流电机中旋转磁场的形成至关重要。
|
20天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。