【文本分类】基于预训练语言模型的BERT-CNN多层级专利分类研究

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 【文本分类】基于预训练语言模型的BERT-CNN多层级专利分类研究

·阅读摘要:

 本文利用BERT的预训练数据,结合CNN,应用于专利分类。由于专利的特性,本文还提出使用多层级方法来增强模型。(文章发表在《中文信息学报》,核心期刊)

·参考文献:

 [1]陆晓蕾,倪斌.基于预训练语言模型的BERT-CNN多层级专利分类研究[J].中文信息学报,2021,35(11):70-79.

[0] 引言


  提出工业界和学术界产生了大量专利申请,现行《国际专利分类法》包含 “部—类—亚 类—组”四个层级,其中“组”级共含有7万多种类别,人工太难分辨,所以提出用神经网络来分类。

【思考一】:专利分类作为文本分类中的一个垂直领域,标签有多层级、多标签的特点,不像做新闻分类、情感分类很多时候标签单一、且简单、都是自定义的。所以专利分类写论文更有“点”可写。

[1] 相关研究


  此小节论述了文本分类的综述,从机器学习到神经网络到词向量、Elmo、GPT、Transformer、BERT。

 最后提出BERT也是有缺点的。“虽然BERT提供了下游任务的简单接口,可以直接进行文本分类。然而,BERT作为预训练语言模型,关于其作为文档向量的研究和应用

尚不多见。”

 然后说fastText可以做文档向量,效果也不错,但是它使用的是word embedding,不能解决语义(多义词)问题。

 最后的idea就是把BERT与fastText结合。

[2] 研究方法


[2.1] BERT-CNN模型结构

image.png

  上图一目了然。作者使用BERT的后4层,作为卷积的输入,之后经过池化、softmax来分类。

【思考二】:其实拿BERT的最后一层接fc就能直接做文本分类。

[2.2] 多层文本分类架构

image.png

  作者提供了一种处理标签有层级关系的文本分类办法。

  首先对所有数据、一级标签进行分类;之后依次对所有归类为一级标签A的数据、一级标签A的子标签进行分类,对所有归类为一级标签B的数据、一级标签B的子标签进行分类,对所有归类为一级标签…的数据、一级标签…的子标签进行分类。

【思考三】:文章没有解决多标签问题。

[3] 实验与结果


[3.1] 数据集

  数据集采用国家信息中心提供的全国专利申请数据 。数据总量达到277万条记录。时间跨度为2017年全年(按照专利申请时间统计),地域覆盖全国。

[3.2] 实验结果

de4549e4b737497b970e9482e07b19d3.png

相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
83 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
134 1
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
4月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
81 1
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
BERT-IMDB电影评论情感分类实战:SwanLab可视化训练
这篇文章介绍了使用BERT模型进行IMDB电影评论情感分类的实战教程,涉及SwanLab、transformers和datasets库。作者提供了一键安装库的命令,并详细解释了每个库的作用。文章展示了如何加载BERT模型和IMDB数据集,以及如何利用SwanLab进行可视化训练。训练过程在SwanLab平台上进行,包括模型微调、指标记录和结果可视化。此外,还提供了完整代码、模型与数据集的下载链接,以及相关工具的GitHub仓库地址。
BERT-IMDB电影评论情感分类实战:SwanLab可视化训练
|
4月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
46 0
|
6月前
|
机器学习/深度学习 JSON 测试技术
CNN依旧能战:nnU-Net团队新研究揭示医学图像分割的验证误区,设定先进的验证标准与基线模型
在3D医学图像分割领域,尽管出现了多种新架构和方法,但大多未能超越2018年nnU-Net基准。研究发现,许多新方法的优越性未经严格验证,揭示了验证方法的不严谨性。作者通过系统基准测试评估了CNN、Transformer和Mamba等方法,强调了配置和硬件资源的重要性,并更新了nnU-Net基线以适应不同条件。论文呼吁加强科学验证,以确保真实性能提升。通过nnU-Net的变体和新方法的比较,显示经典CNN方法在某些情况下仍优于理论上的先进方法。研究提供了新的标准化基线模型,以促进更严谨的性能评估。
176 0
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
【传知代码】BERT论文解读及情感分类实战-论文复现
本文介绍了BERT模型的架构和技术细节,包括双向编码器、预训练任务(掩码语言模型和下一句预测)以及模型微调。文章还提供了使用BERT在IMDB数据集上进行情感分类的实战,包括数据集处理、模型训练和评估,测试集准确率超过93%。BERT是基于Transformer的预训练模型,适用于多种NLP任务。在实践中,BERT模型加载预训练权重,对输入数据进行预处理,然后通过微调适应情感分类任务。
390 0
【传知代码】BERT论文解读及情感分类实战-论文复现
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
240 0
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化

热门文章

最新文章