强强联合,开源中文DeepSeek-R1蒸馏数据集联合魔搭社区,一起来训练中文版推理模型!

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 近期,刘聪NLP开源了开源中文DeepSeek-R1(满血)蒸馏数据集包括SFT版本和普通版本,话不多说,先放数据下载链接。

前言

近期,刘聪NLP开源了开源中文DeepSeek-R1(满血)蒸馏数据集包括SFT版本和普通版本,话不多说,先放数据下载链接。

中文基于满血DeepSeek-R1蒸馏数据集-110k-SFT版本:

https://modelscope.cn/datasets/liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT

中文基于满血DeepSeek-R1蒸馏数据集-110k:

https://modelscope.cn/datasets/liucong/Chinese-DeepSeek-R1-Distill-data-110k

本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。

为什么开源这个数据?

DeepSeek-R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但目前我们发现,大部分开源的R1蒸馏数据集均为英文数据集。同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集,来保障训练中不丢失通用能力。为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。

该数据集发布后,也迅速登上HuggingFace Trending榜!

该中文数据集中的数据分布如下:

  • Math:共计36568个样本,
  • Exam:共计2432个样本,
  • STEM:共计12648个样本,
  • General:共计58352,包含弱智吧、逻辑推理、小红书、知乎、Chat等

01.数据集蒸馏细节

数据的prompt源来自如下数据集:

  • Haijian/Advanced-Math
  • gavinluo/applied_math
  • meta-math/GSM8K_zh
  • EduChat-Math
  • m-a-p/COIG-CQIA
  • m-a-p/neo_sft_phase2
  • hfl/stem_zh_instruction

同时为了方便大家溯源,在每条数据的repo_name字段中都加入的原始数据源repo。

在蒸馏过程中,按照DeepSeek-R1官方提供的细节,进行数据蒸馏。

  • 不增加额外的系统提示词
  • 设置temperature为0.6
  • 如果为数学类型数据,则增加提示词,“请一步步推理,并把最终答案放到 \boxed{}。”
  • 防止跳出思维模式,强制在每个输出的开头增加"\n",再开始生成数据

由于模型贡献者个人资源有限,所有数据的蒸馏均调用无问芯穹的企业版满血R1 API生成,在此由衷的感谢无问芯穹提供的支持。

02.数据打分细节

数据生成结果进行了二次校验,并保留了评价分数。

针对Math和Exam数据,先利用Math-Verify进行校对,无法规则抽取结果的数据,再利用Qwen2.5-72B-Instruct模型进行打分,正确为10分,错误为0分。

针对其他数据,直接利用Qwen2.5-72B-Instruct模型从无害性、有用性、正确性/完整性三个角度进行打分,分值范围为0-10分。

本数据集保留了最后打分结果,为后续的数据筛选提供帮助,但注意,所有打分均基于模型,因此评分可能并不准确,请斟酌使用。

03.最佳实践

ms-swift已经接入了中文基于满血DeepSeek-R1蒸馏数据集,通过指定`--dataset liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT`即可选择该数据集进行训练。ms-swift是魔搭社区官方提供的大模型与多模态大模型训练部署框架。

ms-swift开源地址:

https://github.com/modelscope/ms-swift

本章将展示使用ms-swift对该数据集进行SFT。在开始训练之前,请先安装ms-swift:

# pip install git+https://github.com/modelscope/ms-swift.git
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .

微调脚本如下,我们随机抽样数据集中的2000条进行训练:

nproc_per_node=2
CUDA_VISIBLE_DEVICES=0,1 \
NPROC_PER_NODE=$nproc_per_node \
swift sft \
    --model Qwen/Qwen2.5-1.5B \
    --train_type full \
    --dataset 'liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT#2000' \
    --torch_dtype bfloat16 \
    --num_train_epochs 10 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --learning_rate 1e-5 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --eval_steps 200 \
    --save_steps 200 \
    --save_total_limit 5 \
    --logging_steps 5 \
    --max_length 8192 \
    --output_dir output \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4 \
    --deepspeed zero2

训练显存占用:(训练时长:40分钟)

推理脚本如下,需要将`--model`替换成训练生产的last checkpoint文件夹:

# pip install vllm -U
CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --model output/vx-xxx/checkpoint-xxx \
    --stream true \
    --infer_backend vllm \
    --max_model_len 8192 \
    --max_new_tokens 2048 \
    --temperature 0.3

推送到ModelScope:

swift export \
    --model output/vx-xxx/checkpoint-xxx \
    --push_to_hub true \
    --hub_model_id '<your-model-id>' \
    --hub_token '<your-sdk-token>'

训练效果:(有部分内容省略)

04.局限性

由于数据是由蒸馏DeepSeek-R1生成的,未经严格验证,在事实性和其他方面还存在一些不足。因此,在使用此数据集时,请务必注意甄别。

本数据集不代表任何一方的立场、利益或想法,无关任何团体的任何类型的主张。因使用本数据集带来的任何损害、纠纷,本项目的开发者不承担任何责任。

点击链接即可跳转数据集~

中文基于满血DeepSeek-R1蒸馏数据集-110k

目录
相关文章
|
11月前
|
自然语言处理 数据可视化 物联网
Qwen1.5-MoE开源,魔搭社区推理训练最佳实践教程来啦
通义千问团队推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。
|
11月前
|
人工智能 自然语言处理 机器人
Jina AI 发布中英和英德双语 8K 向量模型,魔搭社区开源最佳实践!
在 Jina Embeddings 英语向量模型突破百万下载后,今天,Jina AI正式开源了两款双语向量模型:中英双语(Chinese-English)和英德双语(English-German)向量模型,这也是全球首次推出支持 8K 双语文本的开源向量模型。
|
数据可视化 PyTorch 算法框架/工具
零一万物Yi-34B-Chat 微调模型及量化版开源!魔搭社区最佳实践教程!
11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。魔搭社区已支持下载、推理训练体验,并推出相关教程,欢迎大家来玩!
|
1月前
|
Swift
DeepSeek开源Janus-Pro多模态理解生成模型,魔搭社区推理、微调最佳实践
DeepSeek开源Janus-Pro多模态理解生成模型,魔搭社区推理、微调最佳实践
129 1
|
10月前
|
人工智能 JSON 自然语言处理
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
GLM-4-9B是智谱AI推出的新一代预训练模型GLM-4系列的开源版本,它在多个数据集上的测试中表现出高绩效,包括语义理解、数学问题解决、推理和代码理解等方面。GLM-4-9B模型有四个变体:基础版GLM-4-9B(8K)、对话版GLM-4-9B-Chat(128K)、超长上下文版GLM-4-9B-Chat-1M(1M)和多模态版GLM-4V-9B-Chat(8K)。用户可以通过魔搭社区提供的链接体验这些模型,包括在CPU上运行的版本和支持vLLM推理的版本。
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
|
11月前
|
安全 测试技术 Swift
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
|
11月前
|
人工智能 安全 测试技术
微软开源4.2B参数多模态SLM模型Phi-3-vision,魔搭社区推理、微调实战教程来啦!
在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。
|
9月前
|
数据可视化 物联网 Swift
谷歌开源Gemma2!魔搭社区推理、微调最佳实践教程
Google面向全球研究人员和开发者发布并开源 Gemma 2 大语言模型!本次Gemma 2 系列为轻量级开放模型,提供9B和27B参数两种尺寸,采用全新的架构设计,性能表现优异。
|
11月前
|
数据可视化 物联网 关系型数据库
幻方开源第二代MoE模型 DeepSeek-V2,魔搭社区推理、微调最佳实践教程
5月6日,幻方继1月份推出首个国产MoE模型,历时4个月,带来第二代MoE模型DeepSeek-V2,并开源了技术报告和模型权重,魔搭社区可下载体验。
|
11月前
|
自然语言处理 物联网 Swift
联合XTuner,魔搭社区全面支持数据集的长文本训练
XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。

热门文章

最新文章