性能测试岗位能力模型

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 针对这个问题,结合我自己之前作为面试官和稳定性团队Leader的经验,对于性能测试岗位,我个人认为岗位能力模型的划分可以参照如下的内容。

星球有同学向我提了一个问题:


目前在做性能测试岗位的职级划分和能力模型定义的的工作,想咨询下性能测试岗位按照初/中/高/资深/专家,不同职级应该具备哪些能力,如何衡量这些能力”?


针对这个问题,结合我自己之前作为面试官和稳定性团队Leader的经验,对于性能测试岗位,我个人认为岗位能力模型的划分可以参照如下的内容。


岗位胜任力模型


岗位分级 必备技能 角色定位 关键任务
初级 1、性能测试基础理论2、熟练使用压测工具 脚本执行工具人 1、能写脚本2、看得懂监控指标
中级/高级 1、性能测试基础理论2、熟练使用压测及监控工具3、对业务有不同程度的了解 一定的独立负责需求能力 1、能写脚本造数据2、看得懂监控指标3、不同程度的需求分析能力
资深 1、丰富的理论知识2、掌握各种压测监控分析工具3、对业务场景有足够的了解4、对被测系统有足够的了解 1、独自owner复杂项目2、指导团队同学性能测试工作 1、owner项目2、事前评估事中验证事后参与定位优化
专家 1、丰富的理论知识2、根据不同情况灵活应用各种工具3、对业务和技术架构有足够的了解4、能评估能规划能定位能分析能优化 一站到底


下面是关于上表中部分描述的释义以及个人的一些观点,仅供参考:


  • 基础理论:这个应该不用解释,做性能测试的前提是你要对基础理论有一定的了解;
  • 压测工具:性能落实到具体的事情上就是压测验证,熟练使用压测工具是最基本的能力;
  • 监控工具:性能测试工作需要观察各项监控指标来评估分析,因此熟练使用监控分析工具也是基本能力;
  • 业务场景:性能测试和功能测试没啥区别,所有的测试工具开展都是基于业务场景的,因此需要熟悉具体的业务;
  • 技术架构:性能测试的测试对象是各种软件系统,因此了解系统的技术架构和各种调用依赖关系也是必不可少的;
  • 评估能力:问题越早发现修复成本越低,在需求和方案评审时就评估发现风险,这是高级向资深迈步的必备能力;
  • 规划能力:上面的六点能力主要集中在如何解决问题,规划能力是建设解决问题能力的底层建设和整体发展方向;
  • 一站到底:对于专家岗位,我的认知是所有这个领域的问题到这里就应该都被解决,无论是技术难题还是沟通协调;


最后,其实每个公司对不同岗位的职级定义和能力胜任度都有不同理解和评估标准,特别是技术岗位,定级和评估最重要的是,你能否超预期的解决问题,这才是关键。

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
2月前
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
58 2
|
3月前
|
测试技术 网络安全
什么是软件测试? 软件测试都有什么岗位 ?软件测试和调试的区别? 软件测试和开发的区别? 一位优秀的测试人员应该具备哪些素质? 软件测试等相关概念入门篇
文章全面介绍了软件测试的基本概念、目的、岗位分类、与开发和调试的区别,并阐述了成为优秀测试人员应具备的素质和技能。
329 1
什么是软件测试? 软件测试都有什么岗位 ?软件测试和调试的区别? 软件测试和开发的区别? 一位优秀的测试人员应该具备哪些素质? 软件测试等相关概念入门篇
|
3月前
|
测试技术
谈谈【软件测试的基础知识,基础模型】
谈谈【软件测试的基础知识,基础模型】
35 5
|
3月前
|
敏捷开发 测试技术
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
文章详细介绍了软件开发过程中的不同开发模型(瀑布、螺旋、Scrum)和测试模型(V模型、W模型),以及增量和迭代的概念,最后阐述了敏捷思想及其在敏捷开发(如Scrum)中的应用。
181 0
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
|
3月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
59 0
|
3月前
|
机器学习/深度学习 人工智能 并行计算
StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2
StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2
52 0
|
4月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
6月前
|
机器学习/深度学习 存储 数据可视化
谷歌的时间序列预测的基础模型TimesFM详解和对比测试
在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。
194 2
|
5月前
|
机器学习/深度学习 人工智能
高于临床测试3倍准确率!剑桥大学开发AI模型,提前6年预测阿尔茨海默症
【8月更文挑战第9天】剑桥大学研发的人工智能模型在预测阿尔茨海默症方面取得突破,准确率比传统临床测试高三倍,能提前六年预测疾病发生。该模型基于深度学习,利用大量临床及神经影像数据识别生物标志物,预测准确性达80%。这一成果有望促进早期干预,改善患者预后,但仍需更大规模研究验证,并解决隐私与公平性等问题。论文已发表于《The Lancet》子刊。
66 6
|
5月前
|
机器学习/深度学习 数据采集 测试技术
利用Python实现简单的机器学习模型软件测试的艺术与科学:探索自动化测试框架的奥秘
【8月更文挑战第27天】在本文中,我们将一起探索如何通过Python编程语言创建一个简单的机器学习模型。我们将使用scikit-learn库中的线性回归模型作为示例,并通过一个实际的数据集来训练我们的模型。文章将详细解释每一步的过程,包括数据预处理、模型训练和预测结果的评估。最后,我们会用代码块展示整个过程,确保读者能够跟随步骤实践并理解每个阶段的重要性。

热门文章

最新文章