StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2

简介: StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2

项目简介

StableDiffusion是一款引领数字艺术创作的创新软件,基于人工智能技术的支持,它能够帮助艺术家和设计师以更高效的方式创作出令人惊叹的数字艺术作品。这一技术是由Stability AI公司维护和发布的,其官网地址为 官方地址


历史发展

Stable Diffusion最初由OpenAI提出,旨在解决生成对抗网络(GANs)中的训练稳定性和生成质量问题。它引入了扩散过程(Diffusion Process)的思想,并结合了稳定性调整来改进生成模型。该技术是2022年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如内补绘制、外补绘制,以及在提示词指导下产生图生图的转变。


技术特点

Stable Diffusion的主要特点包括高质量图像生成、开源、高效等。它能够根据输入的文字描述生成具有高清晰度和逼真度的图像。与DALL-E、Midjourney等文图生成模型相比,Stable Diffusion具有开源的模型架构和权重,用户可以根据需求进行微调和再训练。


机器配置

2070 Super 8GB * 2 (为了测试,只用单卡启动服务,开了 “中等显存” 模式)

CUDA 12.1

Ubuntu 18

CPU略

内存 32GB

磁盘 200GB

项目地址

StableDiffusion-WebUI:GitHub WebUI下载

Liblib模型下载:Liblib模型下载

Civitai模型下载:Civitai模型下载

安装依赖

这里需要 pyenv 启动虚拟的环境,防止依赖和依赖之间的冲突。

# 克隆或者下载解压项目
# 切换到项目 
cd stable-diffusion-webui
# 切换Python版本
pyenv local 3.10
# 独立一个环境,避免干扰
python -m venv env
# 切换独立环境
source env/bin/active
# 安装依赖
pip install -r requirements.txt

启动项目

启动webui.sh,我使用的是全路径启动。

同时,添加一些额外的参数:

● listen 对外暴露

● gradio-auth 启动账号密码

● enable-insecure-extension-access 不加的话,对外暴露时,安装插件会有问题

● medvram 中等显存使用(2070Super是8GB的)如果你更小的话 可以考虑 lowvram

# 有需要的话开启科学上网
# export http_proxy=http://xxxx
# export https_proxy=http://xxxx
export no_proxy="localhost, 127.0.0.1, ::1"
export COMMANDLINE_ARGS="--listen --gradio-auth wzk:123456 --enable-insecure-extension-access --medvram"
# 推荐使用绝对路径启动
# 这里是我的安装目录 你可以使用 pwd 查看自己的目录
/home/jp/wzk/stable-diffusion-webui/webui.sh

启动结果

暴露服务在 http://0.0.0.0:7860

登录服务

访问URL,这里服务器的地址是: http://10.10.7.160:7860

由于开启了登录,所以需要先登录才能使用

username wzk
password 123456

写提示词

Prompt

girl swims underwater,hyper detailed render style,glow,yellow,blue,brush,surreal oil pa

Negative Prompt

sketches, (worst quality:2), (low quality:2), (normal quality:2), lowers, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, bad anatomy,DeepNegative,(fat:1.2),facing away, looking away,tilted head, bad anatomy,bad hands, text, error, missing fingers,extra digit, fewer digits, cropped, worst quality, low quality, normal quality,jpeg artifacts,signature, watermark, username,blurry,bad feet,cropped,poorly drawn hands,poorly drawn face,mutation,deformed,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,extra fingers,fewer digits,extra limbs,extra arms,extra legs,malformed limbs,fused fingers,too many fingers,long neck,cross-eyed,mutated hands,bad body,bad proportions,gross proportions,text,error,missing fingers,missing arms,missing legs,extra digit, extra arms, extra leg, extra foot

采样方式

DPM++ 2M Karras
• 1

采样次数

25步

生成结果

点击生成,等待

目录
相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
531 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
543 8
|
3月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
9月前
|
存储 人工智能 测试技术
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
141559 29
小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
|
9月前
|
机器学习/深度学习 自然语言处理 API
阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
DeepSeek R1是基于Transformer架构的先进大规模深度学习模型,2025年1月20日发布并开源,遵循MIT License。它在自然语言处理等任务上表现出色,高效提取特征,缩短训练时间。阿里云推出的满血版方案解决了服务器压力问题,提供100万免费token,云端部署降低成本,用户可快速启动体验。虽然回答速度有待提升,但整体表现优异,备受关注。
339 8
|
9月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。
|
9月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
|
12月前
|
监控 IDE Java
如何在无需重新启动服务器的情况下在 Spring Boot 上重新加载我的更改?
如何在无需重新启动服务器的情况下在 Spring Boot 上重新加载我的更改?
1100 8
|
12月前
|
负载均衡 数据可视化 API
像素流送api ue多人访问需要什么显卡服务器
本文总结了关于像素流送技术的五大常见问题,包括是否支持Unity模型推流、UE多人访问的最大并发数、所需服务器配置、稳定性问题及API支持情况,旨在帮助开发者更好地理解和应用这一技术。
422 1
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
180 2

热门文章

最新文章