# Pytorch 中可以直接调用的Loss Functions总结:(一)

简介: # Pytorch 中可以直接调用的Loss Functions总结:(一)

Pytorch 中可以直接调用的Loss Functions总结:


这里,我们想对Pytorch中可以直接调用的Loss Functions做一个简单的梳理,对于每个Loss Functions,标记了它的使用方法,并对一些不那么常见的Loss FunctionsLink了一些介绍它的Blogs,方便我们学习与使用这些Loss Functions。


L1Loss


用于测量输入中每个元素之间的平均绝对误差 (MAE)。


Creates a criterion that measures the mean absolute error (MAE) between each element in the input x* and target y.


torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')

参数:


size_average (bool, optional) – Deprecated (see ). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field is set to , the losses are instead summed for each minibatch. Ignored when is . Default: reduction``size_average``False``reduce``False``True

reduce (bool, optional) – Deprecated (see ). By default, the losses are averaged or summed over observations for each minibatch depending on . When is , returns a loss per batch element instead and ignores . Default: reduction``size_average``reduce``False``size_average``True

reduction (string*,* optional) – Specifies the reduction to apply to the output: | | . : no reduction will be applied, : the sum of the output will be divided by the number of elements in the output, : the output will be summed. Note: and are in the process of being deprecated, and in the meantime, specifying either of those two args will override . Default: 'none'``'mean'``'sum'``'none'``'mean'``'sum'``size_average``reduce``reduction``'mean'


使用:

>>> loss = nn.L1Loss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()


MSELoss


用于测量输入中每个元素之间的均方误差(L2 范数)

torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

参数:


size_average (bool, optional) – Deprecated (see reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. Default: True

reduce (bool, optional) – Deprecated (see reduction). By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. Default: True

reduction (string*,* optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'


使用:

loss = nn.MSELoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()


CROSSENTROPYLOSS


此标准计算输入和目标之间的交叉熵损失

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0)

The input is expected to contain raw, unnormalized scores for each class. input has to be a Tensor of size ©(C) for unbatched input,(minibatc**h,C) or (minibatch, C, d_1, d_2, …, d_K)(minibatc**h,C,d1,d2,…,d**K) with K \geq 1K≥1 for the K-dimensional case. The last being useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images.


参数:


weight (Tensor, optional) – a manual rescaling weight given to each class. If given, has to be a Tensor of size C

size_average (bool, optional) – Deprecated (see reduction). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field size_average is set to False, the losses are instead summed for each minibatch. Ignored when reduce is False. Default: True

ignore_index (int, optional) – Specifies a target value that is ignored and does not contribute to the input gradient. When size_average is True, the loss is averaged over non-ignored targets. Note that ignore_index is only applicable when the target contains class indices.

reduce (bool, optional) – Deprecated (see reduction). By default, the losses are averaged or summed over observations for each minibatch depending on size_average. When reduce is False, returns a loss per batch element instead and ignores size_average. Default: True

reduction (string*,* optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the weighted mean of the output is taken, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

label_smoothing (float, optional) – A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in Rethinking the Inception Architecture for Computer Vision. Default: 0.00.0.


使用:

# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()


目录
相关文章
|
1月前
|
存储 PyTorch 算法框架/工具
利用PyTorch的三元组损失Hard Triplet Loss进行嵌入模型微调
本文介绍了如何使用 PyTorch 和三元组边缘损失(Triplet Margin Loss)微调嵌入模型,详细讲解了实现细节和代码示例。
48 4
|
机器学习/深度学习 PyTorch 算法框架/工具
# Pytorch 中可以直接调用的Loss Functions总结:(二)
# Pytorch 中可以直接调用的Loss Functions总结:(二)
169 0
# Pytorch 中可以直接调用的Loss Functions总结:(二)
|
PyTorch 算法框架/工具
# Pytorch 中可以直接调用的Loss Functions总结:(三)
# Pytorch 中可以直接调用的Loss Functions总结:(三)
634 0
|
PyTorch 算法框架/工具
Pytorch Loss Functions总结
Pytorch Loss Functions总结
174 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
392 2
|
24天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
42 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
79 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
136 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
219 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
56 3
PyTorch 模型调试与故障排除指南