【无人机】基于粒子群的无人机车载网络优化UAV-VANET附matlab代码

简介: 【无人机】基于粒子群的无人机车载网络优化UAV-VANET附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

It is a challenging task to develop an efficient routing solution for a reliable data delivery in urban vehicular environments. Indeed, it is difficult to find a shortest end-to-end connected path especially in urban city given the mobility  attern of the vehicles and the various obstructions to a clear transmission such as buildings. To overcome these difficulties, we investigate how unmanned aerial vehicles (UAVs) can assist vehicles on the ground in relaying in urban areas. In this paper, we propose UVAR (UAV-Assisted VANET Routing Protocol), a new routing technique for Vehicular Ad hoc Networks (VANets). This protocol is based on the use of the traffic density and the knowledge of vehicular connectivity in the streets. With this approach UAVs collect information about the traffic density on the ground and the state of vehicles connectivity, and exchange them with vehicles through Hello messages. These information allow UAV to place themselves so as to allow relaying data when connectivity between sole vehicles on the ground is not possible. Through vehicleto-UAV (V2U) communication, the overall connectivity between vehicles is improved and therefore the routing process is efficiently improved. The performance of the proposed protocol is evaluated and the results to different scenarios are discussed.

⛄ 部分代码

function out = PSOSearch(param, position)


   % Import trace file(SUMO)

   filename = param.filename;

   filename_obj = param.filename_obj;

   filename_connec = param.filename_connec;


   % Number of vehicles available in the dataset(SUMO)

   nVehicle = param.nVehicle; % Have to change according to the trace file

   niter =param.niter;


   % Infrastructure Position

   pos = position; % Have to change according to the trace file

   infRadius = 500;


   % Reading table

   T = readtable(filename);

   T_obj = readtable(filename_obj);

   T_connec = readtable(filename_connec);

   % Number of rows in the table

   n_rows_obj = height(T_obj);


   % Finding minimum and maximum of Position X and Y

   minPosX = min(T{:,4});

   minPosY = min(T{:,5});

   maxPosX = max(T{:,4});

   maxPosY = max(T{:,5});


   % Vehicle template

   empty_vehicle.id = [];

   empty_vehicle.Position = [];

   empty_vehicle.angle = [];


   % Creating templates for storing Previous connectivity history of vehicles

   empty_pre_conection.id = [];

   empty_pre_conection.id1 = [];

   empty_pre_conection.t1 = 0;

   empty_pre_conection.id2 = [];

   empty_pre_conection.t2 = 0;

   empty_pre_conection.id3 = [];

   empty_pre_conection.t3 = 0;

   empty_pre_conection.id4 = [];

   empty_pre_conection.t4 = 0;

   empty_pre_conection.id5 = [];

   empty_pre_conection.t5 = 0;


   % Create vehicles connections history array

   pre_conection = repmat(empty_pre_conection, nVehicle, 1);


   % Create vehicles array

   object_vehicle = repmat(empty_vehicle, nVehicle, 1);

   for i=1:n_rows_obj

       for j=1:nVehicle

           if strcmp(T_obj{i,1},['veh' num2str((j-1),'%d')])

               object_vehicle(j).id = T_obj{i,1};

               object_vehicle(j).angle = T_obj{i,2};

               object_vehicle(j).Position = [T_obj{i,3}, T_obj{i,4}];

           end

       end

   end


   % Creating vehicles id for 'connection history' data structure

   for i=1:nVehicle

       pre_conection(i).id = ['veh' num2str((i-1), '%d')];

       pre_conection(i).id1 = T_connec{i,1};

       pre_conection(i).t1 = T_connec{i,2};

       pre_conection(i).id2 = T_connec{i,3};

       pre_conection(i).t2 = T_connec{i,4};

       pre_conection(i).id3 = T_connec{i,5};

       pre_conection(i).t3 = T_connec{i,6};

       pre_conection(i).id4 = T_connec{i,7};

       pre_conection(i).t4 = T_connec{i,8};

       pre_conection(i).id5 = T_connec{i,9};

       pre_conection(i).t5 = T_connec{i,10};

   end


   % Storing available vehicle's position in this time-slot (For scatter

   % ploting only)

   counter = 1;

   for i=1:nVehicle

       if ~isempty(object_vehicle(i).id)

           x(counter) = object_vehicle(i).Position(1);

           y(counter) = object_vehicle(i).Position(2);

           all_vehicle(counter).id = object_vehicle(i).id;

           all_vehicle(counter).angle = object_vehicle(i).angle;

           all_vehicle(counter).Position = object_vehicle(i).Position;

           all_vehicle(counter).x = object_vehicle(i).Position(1);

           all_vehicle(counter).y = object_vehicle(i).Position(2);

           all_vehicle(counter).connec_sum = pre_conection(i).t1 + pre_conection(i).t2 + pre_conection(i).t3 ...

               + pre_conection(i).t4 + pre_conection(i).t5;

           counter = counter + 1;

       end

   end


   % Number of vehicles both covered and uncovered

   uncovered_vehicle = all_vehicle;

   nall_vehicle = size(uncovered_vehicle, 2);

   counter1 = 1;


   % Finding all the uncovered vehicles

   for j = 1:niter

       for i = 1:nall_vehicle

           dist(j).inf = sqrt(sum((pos(j).inf - uncovered_vehicle(i).Position) .^2));

           if dist(j).inf > infRadius

               uncovered_vehicle(counter1).id = uncovered_vehicle(i).id;

               uncovered_vehicle(counter1).angle = uncovered_vehicle(i).angle;

               uncovered_vehicle(counter1).Position = uncovered_vehicle(i).Position;

               uncovered_vehicle(counter1).connec_sum = uncovered_vehicle(i).connec_sum;

               counter1 = counter1 + 1;

           end

       end

       uncovered_vehicle = uncovered_vehicle(1:counter1-1);

       nall_vehicle = size(uncovered_vehicle, 2);

       counter1 = 1;

   end


   % Number of uncovered vehicles

   nuncovered_vehicle = size(uncovered_vehicle, 2);


   % Problem Definition

   nVar = 2;   % Decision Variable

   VarSize = [1 nVar]; % Matrix Size of Decision Variables

   VarMin = min(minPosX, minPosY);   % Lower Bound of Decision Variables

   VarMax = max(maxPosX, maxPosY);    % Upper Bound of Decision Variables


   % Parameters of PSO

   MaxIt = param.MaxIt;    % Maximum Number of Iterations

   nPop = param.nPop;  % Population Size

   w = 1;      % Intertia Coefficient

   wdamp = 0.99; % Damping Ratio of Intertia Coefficient

   c1 = 2;     % Personal Acceleration Coefficient

   c2 = 2;     % Social Acceleration Coefficient

   MaxVelocity = 0.15*(VarMax-VarMin);

   MinVelocity = -MaxVelocity;


   % Initialization

   % The particle template

   empty_particle.Position = [];

   empty_particle.Velocity = [];

   empty_particle.Cost = [];

   empty_particle.Best.Position = [];

   empty_particle.Best.Cost = [];


   % create population array

   particle = repmat(empty_particle, nPop, 1);


   % Initialize Global Best

   GlobalBest.Cost = -inf;

   GlobalBest.Position = [0,0];


   % Initialize population members

   for i=1:nPop

       % Generate Random Solution

       particle(i).Position = unifrnd(VarMin, VarMax, VarSize);


       % Initialize Velociy

       particle(i).Velocity = zeros(VarSize);


       % Evaluation

       evaluation = objfuntest(particle(i).Position, nuncovered_vehicle, uncovered_vehicle, pos, niter);

       particle(i).Cost = evaluation.Fitness;

       nMi = evaluation.M;

       nNi = evaluation.N;


       % Update the Personal Best

       particle(i).Best.Position = particle(i).Position;

       particle(i).Best.Cost = particle(i).Cost;


       % Update Global Best

       if particle(i).Best.Cost > GlobalBest.Cost

           GlobalBest = particle(i).Best;

       end


   end

   % Array to Hold Best Cost Value on Each Iteration

   BestCosts = zeros(MaxIt, 1);

   

   nM = 0;

   nN = 0;


   %  Main Loop of PSO

   for it=1:MaxIt

       for i=1:nPop

           % Update Velocity

           particle(i).Velocity = w*particle(i).Velocity ...

               + c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position) ...

               + c2*rand(VarSize).*(GlobalBest.Position -particle(i).Position);


           % Apply Velocity Limits

           particle(i).Velocity = max(particle(i).Velocity, MinVelocity);

           particle(i).Velocity = min(particle(i).Velocity, MaxVelocity);


           % Update Position

           particle(i).Position = particle(i).Position + particle(i).Velocity;


           % Apply Lower and Upper Bound Limits

           particle(i).Position = max(particle(i).Position, VarMin);

           particle(i).Position = min(particle(i).Position, VarMax);


           % Evaluation

           evaluation = objfuntest(particle(i).Position, nuncovered_vehicle, uncovered_vehicle, pos, niter);

           particle(i).Cost = evaluation.Fitness;


           % Update Personal Best

           if particle(i).Cost > particle(i).Best.Cost


               particle(i).Best.Position = particle(i).Position;

               particle(i).Best.Cost = particle(i).Cost;


               % Update Global Best

               if particle(i).Best.Cost > GlobalBest.Cost

                   GlobalBest = particle(i).Best;

                   nM = evaluation.M;

                   nN = evaluation.N;

               end

           end

       end

       % Store the Best Cost Value

       BestCosts(it) = GlobalBest.Cost;


       % Damping Intertia Coefficient

       w = w * wdamp;

   end

   out.Fitness = GlobalBest.Cost;

   out.Position = GlobalBest.Position;

   out.Uncov_veh = evaluation.V;

   out.nM = nM;

   out.nN = nN;

   out.x = x;

   out.y = y;

   out.VarMin = VarMin;

   out.VarMax = VarMax;

   out.Total_vehicle = size(all_vehicle, 2);

   out.Best_cost = BestCosts;

end

⛄ 运行结果

⛄ 参考文献

[1] Oubbati O S ,  Lakas A ,  Lagraa N , et al. UVAR: An intersection UAV-assisted VANET routing protocol[C]// 2016 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2016.

[2] Wang X ,  Fu L ,  Zhang Y , et al. VDNet: an infrastructure‐less UAV‐assisted sparse VANET system with vehicle location prediction[J]. Wireless Communications & Mobile Computing, 2016.

[3]Gan, Xiaoying, Wang,等. VDNet: an infrastructure-less UAV-assisted sparse VANET system with vehicle location prediction[J]. Wireless Communications & Mobile Computing, 2016.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
1月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
108 0
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
139 8
|
1月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
130 8
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
264 17
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
223 10
|
11月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
234 10
|
11月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
11月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
11月前
|
安全 算法 网络协议
网络安全与信息安全知识分享
本文深入探讨了网络安全漏洞、加密技术以及安全意识三个方面,旨在帮助读者更好地理解和应对网络安全威胁。通过分析常见的网络安全漏洞类型及其防范措施,详细介绍对称加密和非对称加密的原理和应用,并强调提高个人和企业安全意识的重要性,为构建更安全的网络环境提供指导。
212 2

热门文章

最新文章