原文:
Wine recognition dataset
**Data Set Characteristics:**
Number of Instances: 178 (50 in each of three classes)
Number of Attributes: 13 numeric, predictive attributes and theclass
Attribute Information:
- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline
- class:
- class_0
- class_1
- class_2
Summary Statistics:
Min Max Mean SD
Alcohol: 11.0 14.8 13.0 0.8
Malic Acid: 0.74 5.80 2.34 1.12
Ash: 1.36 3.23 2.36 0.27
Alcalinity of Ash: 10.6 30.0 19.5 3.3
Magnesium: 70.0 162.0 99.7 14.3
Total Phenols: 0.98 3.88 2.29 0.63
Flavanoids: 0.34 5.08 2.03 1.00
Nonflavanoid Phenols: 0.13 0.66 0.36 0.12
Proanthocyanins: 0.41 3.58 1.59 0.57
Colour Intensity: 1.3 13.0 5.1 2.3
Hue: 0.48 1.71 0.96 0.23
OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71
Proline: 278 1680 746 315
Missing Attribute Values: None
Class Distribution: class_0 (59), class_1 (71), class_2 (48)
Creator: R.A. Fisher
Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
Date: July, 1988
This is a copy of UCI ML Wine recognition datasets.
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
The data is the results of a chemical analysis of wines grown in thesame region in Italy by three different cultivators. There are thirteendifferent measurements taken for different constituents found in the threetypes of
wine.
Original Owners:
Forina, M. et al, PARVUS -
An Extendible Package for Data Exploration, Classification andCorrelation. Institute of Pharmaceutical and Food Analysis and Technologies,ViaBrigata Salerno, 16147 Genoa, Italy.
Citation:
Lichman, M. (2013). UCI Machine LearningRepository[https://archive.ics.uci.edu/ml]. Irvine, CA: University of California,Schoolof Information and Computer Science.
topic:: References
(1) S. Aeberhard, D. Coomansand O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech.Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James CookUniversity of North Queensland. (Also submitted to Technometrics).
The data was used with many others for comparing variousclassifiers. The classes are separable, though only RDA has achieved 100%correct classification. (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1%(z-transformed data)) (All results usingthe leave-one-out technique)
(2) S. Aeberhard, D. Coomansand O. de Vel, "THE CLASSIFICATION PERFORMANCE OF RDA" Tech. Rep. no.92-01, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James CookUniversity of North Queensland. (Also submitted to Journal of Chemometrics).
译文:
葡萄酒识别数据集
**数据集特征:**
实例数:178(三个类各50个)
属性数:13个数值、预测属性和类
属性信息:
- 酒精
- 苹果酸
- 灰烬
- 灰分的碱性
- 镁
- 总酚类
- 黄酮类化合物
- 非黄酮类酚类
- 原花青素
- 颜色强度
- 色调
- 稀释葡萄酒的OD280/OD315
- 脯氨酸
- 类:
- -0类
- -1类
- -2类
摘要统计:
最小最大平均标准差
酒精:11.0 14.8 13.0 0.8
苹果酸:0.74 5.80 2.34 1.12
灰分:1.36 3.23 2.36 0.27
灰分的碱性:10.6 30.0 19.5 3.3
镁:70.0 162.0 99.7 14.3
总酚:0.98 3.88 2.29 0.63
黄酮类化合物:0.34 5.08 2.03 1.00
非黄酮类酚类:0.13 0.66 0.36 0.12
原花青素:0.41 3.58 1.59 0.57
颜色强度:1.3 13.0 5.1 2.3
色调:0.48 1.71 0.96 0.23
稀释葡萄酒的OD280/OD315:1.27 4.00 2.610.71
脯氨酸:278 1680 746 315
缺少属性值:无
等级分布:类0(59),类1(71),类2(48)
创建者:R.A.Fisher
捐赠者:迈克尔·马歇尔(Marshall%PLU@io.arc.nasa.gov)
日期:1988年7月
这是UCI-ML葡萄酒识别数据集的副本。
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
这些数据是对生长在同一地区的葡萄酒进行化学分析的结果由三个不同的种植者在意大利的地区。有十三种不同对三种类型中发现的不同成分进行测量葡萄酒。
原所有者:
Forina,M.等人,PARVUS-
一种用于数据勘探、分类和对比的可扩展软件包。意大利热那亚16147,Via Brigata Salerno制药和食品分析与技术研究所。
引用:
Lichman,M.(2013年)。UCI机器学习库[https://archive.ics.uci.edu/ml]. 加州欧文:加州大学信息与计算机科学学院。
主题::参考文献
(1) 1992年,昆士兰大学数学与计算机科学与统计系第92号计算机科学与统计系。(同时提交给Technometrics)。这些数据与许多其他数据一起用于比较各种分类器。虽然只有RDA实现了100%的正确分类,但这些类是可分离的。(RDA:100%,QDA 99.4%,LDA 98.9%,1NN 96.1%(z变换数据))(所有结果均采用“留一”技术)
(2) S.Aeberhard、D.Coomans和O.de Vel,“RDA的分类性能”技术报告第92-01号,(1992年),北昆士兰詹姆斯库克大学计算机科学系和数学与统计系。(也提交给化学计量学杂志)。
—————————————————————————————————
软件安全测试
https://study.163.com/course/courseMain.htm?courseId=1209779852&share=2&shareId=480000002205486
接口自动化测试
https://study.163.com/course/courseMain.htm?courseId=1209794815&share=2&shareId=480000002205486
DevOps 和Jenkins之DevOps
https://study.163.com/course/courseMain.htm?courseId=1209817844&share=2&shareId=480000002205486
DevOps与Jenkins 2.0之Jenkins
https://study.163.com/course/courseMain.htm?courseId=1209819843&share=2&shareId=480000002205486
Selenium自动化测试
https://study.163.com/course/courseMain.htm?courseId=1209835807&share=2&shareId=480000002205486
性能测试第1季:性能测试基础知识
https://study.163.com/course/courseMain.htm?courseId=1209852815&share=2&shareId=480000002205486
性能测试第2季:LoadRunner12使用
https://study.163.com/course/courseMain.htm?courseId=1209980013&share=2&shareId=480000002205486
性能测试第3季:JMeter工具使用
https://study.163.com/course/courseMain.htm?courseId=1209903814&share=2&shareId=480000002205486
性能测试第4季:监控与调优
https://study.163.com/course/courseMain.htm?courseId=1209959801&share=2&shareId=480000002205486
Django入门
https://study.163.com/course/courseMain.htm?courseId=1210020806&share=2&shareId=480000002205486
啄木鸟顾老师漫谈软件测试
https://study.163.com/course/courseMain.htm?courseId=1209958326&share=2&shareId=480000002205486