口罩数据集整理:maskSet4k 带标签高质量面罩数据集

简介: 口罩数据集
❤️ 【专栏:数据集整理】❤️ 之【有效拒绝假数据】
👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀

面罩数据集 | 下载自荐| 感谢支持

  • 面罩数据集:

    为什么是面罩:因为国内口罩类型种类繁多,因此这里把凡是类似口罩形状能够完全掩面的图片均标注为带了口罩(mask)。

  • 原始数据主要来源:

    SCUT-FBP5500_v2.1--亚洲人脸;
    明星工作照片(机场、发布会、运动场地)多为爬虫所得;
    整合其他一些没有 labels 的口罩数据集;

  • 我所做的主要工作(数据打标+精选)如下:

       一:使用pytorch 版本 yolov5 进行二分类 mask 检测,首次模型训练15天,对数据打标;
    
       二:数据+标签,人工筛选
       
    
       三:打标数据更新数据集再次训练,提升模型精度
    
       四:二三步骤反复迭代 三次,最终得到 准确率(accuracy)高达 0.995 ,召回率 0.99 的检测模型;
    
       五:对数据标签的再次人工筛选,整理得到 **maskSet4k** 数据集;
    
       六:有偿发布该数据集(因为成果已经沉淀下去,该数据集属个人之前阶段学习兴趣总结所得,研究方向已换,后续价值有限)
    

基础分享如下:

小的目标检测数据集下载链接:

当前最好的开源口罩数据集:

面罩数据集样本--带标签(口罩数据 100 + 人脸数据 100)

本次 maskSet4k 口罩数据集,主要包含内容如下:

下载压缩包之后,解压内容如下:

1

不带口罩数据,示例如下:

2

带面罩数据,示例如下:

3

该数据集主要特点如下:

  • 训练数据量 4k, mask 和 unmak 比例 1:1;
  • 标注准确率极高,因为模型迭代训练一个月的过程中,自己做人工检测和数据标签修正花费2个周末;
  • 对于一个图片中存在多张人脸,会有部分人脸没有标签,因为模型检测不到(或者无法判断),那这样的人脸就是没有标签的;但是对于模型训练而言,这样的数据是没有影响的;
  • 现有公开口罩数据集特点:数据量小,不带标签或者标签很不准确,本数据集有质量保证
  • 网上下载的口罩数据集,通常需要花费精力整理和筛选才能够真正使用
  • 该数据为真实场景佩戴的口罩(非模拟)
  • 仅适用于二分类(戴口罩 0 与 不戴 1),口罩检测
  • 非免费提供
声明:该资源下载所得数据集,可自行研究使用、学术、工业皆可,请勿在互联网途径传播;

📙 博主 AI 领域八大干货专栏、诚不我欺

📙 预祝各位 2022 前途似锦、可摘星辰

🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
❤️ 过去的一年、大家都经历了太多太多、祝你披荆斩棘、未来可期

9-9

目录
相关文章
【yolo训练数据集】标注好的垃圾分类数据集共享
【yolo训练数据集】标注好的垃圾分类数据集共享
2307 138
【yolo训练数据集】标注好的垃圾分类数据集共享
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
964 24
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
|
人工智能 数据可视化 数据处理
快速在 PaddleLabel 标注的花朵分类数据集上展示如何应用 PaddleX 训练 MobileNetV3_ssld 网络
快速在 PaddleLabel 标注的花朵分类数据集上展示如何应用 PaddleX 训练 MobileNetV3_ssld 网络
804 0
快速在 PaddleLabel 标注的花朵分类数据集上展示如何应用 PaddleX 训练 MobileNetV3_ssld 网络
|
5月前
|
机器学习/深度学习 自然语言处理 算法
什么是数据集的分类?
【7月更文挑战第10天】什么是数据集的分类?
646 1
|
7月前
|
机器学习/深度学习 数据采集 算法
大模型时代下的数据标注
大模型时代下的数据标注
277 2
大模型时代下的数据标注
|
XML JSON 算法
【数据集转换】VOC数据集转COCO数据集·代码实现+操作步骤
与VOC一个文件一个xml标注不同,COCO所有的目标框标注都是放在一个json文件中的。
1462 1
|
XML 数据可视化 数据格式
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
【数据集显示标注】VOC文件结构+数据集标注可视化+代码实现
455 0
|
机器学习/深度学习 自然语言处理
(路透社数据集)新闻分类:多分类问题实战
(路透社数据集)新闻分类:多分类问题实战
|
数据可视化 计算机视觉 Python
【数据集可视化】VOC数据集标注可视化+代码实现
在做目标检测时,首先要检查标注数据。一方面是要了解标注的情况,另一方面是检查数据集的标注和格式是否正确,只有正确的情况下才能进行下一步的训练。
297 0
|
数据处理 索引
决策树IMDB数据集电影评测分类
决策树IMDB数据集电影评测分类
284 0
决策树IMDB数据集电影评测分类

热门文章

最新文章