【图像检测】基于CNN深度学习实现图像视网膜病变检测附matlab代码

简介: 【图像检测】基于CNN深度学习实现图像视网膜病变检测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

为解决医学上糖尿病性视网膜病变图像人工识别困难,精度差等问题,提出一种基于多特征融合的卷积神经网络识别方法.在V GG-16模型的基础上,通过融合每层网络上的局部特征,增强模型的特征提取能力.选用Softmax分类器,使病变图像识别更加准确.使用OpenCV图像处理工具采用加噪,上下左右不同角度翻转,调节对比度等5种方式扩充训练集.实验结果表明,基于多特征融合的深度学习框架图像识别系统在数据集上的平均识别精度达到94.23%.

⛄ 部分代码

clc

clear all

close al

imds = imageDatastore('.\Database',...

   'IncludeSubfolders',true,...

   'LabelSource','foldernames');

[Data,testData]= splitEachLabel(imds,0.8,'randomize');

% Training files


[trainData] =Data;


layers = [

   imageInputLayer([128 200 3],'Name','input')


   convolution2dLayer(5,16,'Padding','same','Name','conv_1')

   batchNormalizationLayer('Name','BN_1')

   reluLayer('Name','relu_1')


   convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')

   batchNormalizationLayer('Name','BN_2')

   reluLayer('Name','relu_2')

   convolution2dLayer(3,32,'Padding','same','Name','conv_3')

   batchNormalizationLayer('Name','BN_3')

   reluLayer('Name','relu_3')


   additionLayer(2,'Name','add')


   averagePooling2dLayer(2,'Stride',2,'Name','avpool')

   fullyConnectedLayer(2,'Name','fc')

   softmaxLayer('Name','softmax')

   classificationLayer('Name','classOutput')];


% Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

lgraph = layerGraph(layers);

figure

plot(lgraph)


% Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');

lgraph = addLayers(lgraph,skipConv);

figure

plot(lgraph)

[convnet, traininfo] = trainNetwork(trainData,lgraph,options);

I = imread('test1.tif');

figure,imshow(I)

% % %     done classification

class = classify(convnet,I);

title(char(class))

⛄ 运行结果

⛄ 参考文献

[1]叶显一. 基于深度学习的糖尿病视网膜病变图像中渗出物的检测方法研究[D]. 武汉工程大学.

[2]潘杨帆, 吴涛, 颜二惠,等. 基于CNN的糖尿病视网膜病变图像识别研究[J]. 电脑知识与技术:学术版, 2019, 15(11):3.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
14天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
63 5
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
81 7
|
23天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
32 1
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
40 1

热门文章

最新文章

下一篇
DataWorks