spss、R语言、Python数据分析系列(3):R语言从外部读取数据

简介: spss、R语言、Python数据分析系列(3):R语言从外部读取数据

R语言作为一个专业的统计软件,具有很多从外部导入数据的方法,

下面具体学习总结和分享一下:

 

 1、读取txt文件

 

 data=read.table(文件,--------);后面有很多可选择的参数,就不一一解释,大家可以使用help(read.table)查看相应的帮助


data=read.table("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-02a.txt")
data
 V1 V2 V3   V4 V5
1  6  0 10 1.46 38
2 15  0 10 1.48 39
3  4  0 11 1.52 42
4  3  0 11 1.55 44
5 11  1 11 1.55 55
6 18  1 11 1.56 48


2、读取csv文件


同理,data=read.csv(文件,------------);后面是可选参数


data1=read.csv("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.csv")
data1
   X2008.1.7 X11.97 X12.14 X11.7 X11.9 X11.9.1
1   2008/1/8  11.90  12.75 11.80 12.21   12.21
2   2008/1/9  12.10  13.03 12.05 12.94   12.94
3  2008/1/10  13.04  13.32 12.71 13.10   13.10
4  2008/1/11  13.15  14.15 13.15 13.93   13.93
5  2008/1/14  13.96  14.45 13.60 14.03   14.03
6  2008/1/15  14.00  14.18 13.70 13.97   13.97
7  2008/1/16  13.80  13.85 13.11 13.32   13.32
8  2008/1/18  13.27  13.73 12.20 12.80   12.80
9  2008/1/21  12.75  13.34 12.35 13.22   13.22
10 2008/1/22  13.08  13.20 11.90 11.90   11.90
11 2008/1/23  11.00  11.40 10.71 10.71   10.71
12 2008/1/24  11.30  11.47 11.00 11.17   11.17
13  2008/1/7  11.97  12.14 11.70 11.90   11.90
14  2008/1/8  11.90  12.75 11.80 12.21   12.21
15  2008/1/9  12.10  13.03 12.05 12.94   12.94
16 2008/1/10  13.04  13.32 12.71 13.10   13.10
17 2008/1/11  13.15  14.15 13.15 13.93   13.93
18 2008/1/14  13.96  14.45 13.60 14.03   14.03
19 2008/1/15  14.00  14.18 13.70 13.97   13.97
20 2008/1/16  13.80  13.85 13.11 13.32   13.32
21 2008/1/18  13.27  13.73 12.20 12.80   12.80
22 2008/1/21  12.75  13.34 12.35 13.22   13.22
23 2008/1/22  13.08  13.20 11.90 11.90   11.90
24 2008/1/23  11.00  11.40 10.71 10.71   10.71
25 2008/1/24  11.30  11.47 11.00 11.17   11.17
26  2008/1/7  11.97  12.14 11.70 11.90   11.90
27  2008/1/8  11.90  12.75 11.80 12.21   12.21
28  2008/1/9  12.10  13.03 12.05 12.94   12.94
29 2008/1/10  13.04  13.32 12.71 13.10   13.10
30 2008/1/11  13.15  14.15 13.15 13.93   13.93
31 2008/1/14  13.96  14.45 13.60 14.03   14.03
32 2008/1/15  14.00  14.18 13.70 13.97   13.97
33 2008/1/16  13.80  13.85 13.11 13.32   13.32
34 2008/1/18  13.27  13.73 12.20 12.80   12.80
35 2008/1/21  12.75  13.34 12.35 13.22   13.22
36 2008/1/22  13.08  13.20 11.90 11.90   11.90
37 2008/1/23  11.00  11.40 10.71 10.71   10.71
38 2008/1/24  11.30  11.47 11.00 11.17   11.17
39  2008/1/7  11.97  12.14 11.70 11.90   11.90
40  2008/1/8  11.90  12.75 11.80 12.21   12.21
41  2008/1/9  12.10  13.03 12.05 12.94   12.94
42 2008/1/10  13.04  13.32 12.71 13.10   13.10
43 2008/1/11  13.15  14.15 13.15 13.93   13.93
44 2008/1/14  13.96  14.45 13.60 14.03   14.03
45 2008/1/15  14.00  14.18 13.70 13.97   13.97
46 2008/1/16  13.80  13.85 13.11 13.32   13.32
47 2008/1/18  13.27  13.73 12.20 12.80   12.80
48 2008/1/21  12.75  13.34 12.35 13.22   13.22
49 2008/1/22  13.08  13.20 11.90 11.90   11.90
50 2008/1/23  11.00  11.40 10.71 10.71   10.71
51 2008/1/24  11.30  11.47 11.00 11.17   11.17
52  2008/1/7  11.97  12.14 11.70 11.90   11.90
53  2008/1/8  11.90  12.75 11.80 12.21   12.21
54  2008/1/9  12.10  13.03 12.05 12.94   12.94
55 2008/1/10  13.04  13.32 12.71 13.10   13.10
56 2008/1/11  13.15  14.15 13.15 13.93   13.93
57 2008/1/14  13.96  14.45 13.60 14.03   14.03
58 2008/1/15  14.00  14.18 13.70 13.97   13.97
59 2008/1/16  13.80  13.85 13.11 13.32   13.32
60 2008/1/18  13.27  13.73 12.20 12.80   12.80
61 2008/1/21  12.75  13.34 12.35 13.22   13.22
62 2008/1/22  13.08  13.20 11.90 11.90   11.90
63 2008/1/23  11.00  11.40 10.71 10.71   10.71
64 2008/1/24  11.30  11.47 11.00 11.17   11.17
65  2008/1/7  11.97  12.14 11.70 11.90   11.90
66  2008/1/8  11.90  12.75 11.80 12.21   12.21
67  2008/1/9  12.10  13.03 12.05 12.94   12.94
68 2008/1/10  13.04  13.32 12.71 13.10   13.10
69 2008/1/11  13.15  14.15 13.15 13.93   13.93
70 2008/1/14  13.96  14.45 13.60 14.03   14.03
71 2008/1/15  14.00  14.18 13.70 13.97   13.97
72 2008/1/16  13.80  13.85 13.11 13.32   13.32
73 2008/1/18  13.27  13.73 12.20 12.80   12.80
74 2008/1/21  12.75  13.34 12.35 13.22   13.22
75 2008/1/22  13.08  13.20 11.90 11.90   11.90
76 2008/1/23  11.00  11.40 10.71 10.71   10.71
77 2008/1/24  11.30  11.47 11.00 11.17   11.17


3、读取excel文件(xls)

data2=odbcConnectExcel("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls")
#只能使用32位的windows系统;Error in 
data2=odbcConnectExcel2007("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls")
data2
df=sqlTables(data2)
table_test <- sqlFetch(data2, df$TABLE_NAME[1])
table_test
 2008 1 7 星期一 11#97 12#14  11#7  11#9 11#91
1       2008-01-08 11.90 12.75 11.80 12.21 12.21
2       2008-01-09 12.10 13.03 12.05 12.94 12.94
3       2008-01-10 13.04 13.32 12.71 13.10 13.10
4       2008-01-11 13.15 14.15 13.15 13.93 13.93
5       2008-01-14 13.96 14.45 13.60 14.03 14.03
6       2008-01-15 14.00 14.18 13.70 13.97 13.97
7       2008-01-16 13.80 13.85 13.11 13.32 13.32
8       2008-01-18 13.27 13.73 12.20 12.80 12.80
9       2008-01-21 12.75 13.34 12.35 13.22 13.22
10      2008-01-22 13.08 13.20 11.90 11.90 11.90
11      2008-01-23 11.00 11.40 10.71 10.71 10.71
12      2008-01-24 11.30 11.47 11.00 11.17 11.17
13      2008-01-07 11.97 12.14 11.70 11.90 11.90
14      2008-01-08 11.90 12.75 11.80 12.21 12.21
15      2008-01-09 12.10 13.03 12.05 12.94 12.94
16      2008-01-10 13.04 13.32 12.71 13.10 13.10
17      2008-01-11 13.15 14.15 13.15 13.93 13.93
18      2008-01-14 13.96 14.45 13.60 14.03 14.03
19      2008-01-15 14.00 14.18 13.70 13.97 13.97
20      2008-01-16 13.80 13.85 13.11 13.32 13.32
21      2008-01-18 13.27 13.73 12.20 12.80 12.80
22      2008-01-21 12.75 13.34 12.35 13.22 13.22
23      2008-01-22 13.08 13.20 11.90 11.90 11.90
24      2008-01-23 11.00 11.40 10.71 10.71 10.71
25      2008-01-24 11.30 11.47 11.00 11.17 11.17
26      2008-01-07 11.97 12.14 11.70 11.90 11.90
27      2008-01-08 11.90 12.75 11.80 12.21 12.21
28      2008-01-09 12.10 13.03 12.05 12.94 12.94
29      2008-01-10 13.04 13.32 12.71 13.10 13.10
30      2008-01-11 13.15 14.15 13.15 13.93 13.93
31      2008-01-14 13.96 14.45 13.60 14.03 14.03
32      2008-01-15 14.00 14.18 13.70 13.97 13.97
33      2008-01-16 13.80 13.85 13.11 13.32 13.32
34      2008-01-18 13.27 13.73 12.20 12.80 12.80
35      2008-01-21 12.75 13.34 12.35 13.22 13.22
36      2008-01-22 13.08 13.20 11.90 11.90 11.90
37      2008-01-23 11.00 11.40 10.71 10.71 10.71
38      2008-01-24 11.30 11.47 11.00 11.17 11.17
39      2008-01-07 11.97 12.14 11.70 11.90 11.90
40      2008-01-08 11.90 12.75 11.80 12.21 12.21
41      2008-01-09 12.10 13.03 12.05 12.94 12.94
42      2008-01-10 13.04 13.32 12.71 13.10 13.10
43      2008-01-11 13.15 14.15 13.15 13.93 13.93
44      2008-01-14 13.96 14.45 13.60 14.03 14.03
45      2008-01-15 14.00 14.18 13.70 13.97 13.97
46      2008-01-16 13.80 13.85 13.11 13.32 13.32
47      2008-01-18 13.27 13.73 12.20 12.80 12.80
48      2008-01-21 12.75 13.34 12.35 13.22 13.22
49      2008-01-22 13.08 13.20 11.90 11.90 11.90
50      2008-01-23 11.00 11.40 10.71 10.71 10.71
51      2008-01-24 11.30 11.47 11.00 11.17 11.17
52      2008-01-07 11.97 12.14 11.70 11.90 11.90
53      2008-01-08 11.90 12.75 11.80 12.21 12.21
54      2008-01-09 12.10 13.03 12.05 12.94 12.94
55      2008-01-10 13.04 13.32 12.71 13.10 13.10
56      2008-01-11 13.15 14.15 13.15 13.93 13.93
57      2008-01-14 13.96 14.45 13.60 14.03 14.03
58      2008-01-15 14.00 14.18 13.70 13.97 13.97
59      2008-01-16 13.80 13.85 13.11 13.32 13.32
60      2008-01-18 13.27 13.73 12.20 12.80 12.80
61      2008-01-21 12.75 13.34 12.35 13.22 13.22
62      2008-01-22 13.08 13.20 11.90 11.90 11.90
63      2008-01-23 11.00 11.40 10.71 10.71 10.71
64      2008-01-24 11.30 11.47 11.00 11.17 11.17
65      2008-01-07 11.97 12.14 11.70 11.90 11.90
66      2008-01-08 11.90 12.75 11.80 12.21 12.21
67      2008-01-09 12.10 13.03 12.05 12.94 12.94
68      2008-01-10 13.04 13.32 12.71 13.10 13.10
69      2008-01-11 13.15 14.15 13.15 13.93 13.93
70      2008-01-14 13.96 14.45 13.60 14.03 14.03
71      2008-01-15 14.00 14.18 13.70 13.97 13.97
72      2008-01-16 13.80 13.85 13.11 13.32 13.32
73      2008-01-18 13.27 13.73 12.20 12.80 12.80
74      2008-01-21 12.75 13.34 12.35 13.22 13.22
75      2008-01-22 13.08 13.20 11.90 11.90 11.90
76      2008-01-23 11.00 11.40 10.71 10.71 10.71
77      2008-01-24 11.30 11.47 11.00 11.17 11.17



  4、读取excel文件(xlsx)  


  使用xlsx包  

library('xlsx')
data3=read.xlsx("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xls",1)
data3
X39454 X11.97 X12.14 X11.7 X11.9 X11.9.1
1  2008-01-08  11.90  12.75 11.80 12.21   12.21
2  2008-01-09  12.10  13.03 12.05 12.94   12.94
3  2008-01-10  13.04  13.32 12.71 13.10   13.10
4  2008-01-11  13.15  14.15 13.15 13.93   13.93
5  2008-01-14  13.96  14.45 13.60 14.03   14.03
6  2008-01-15  14.00  14.18 13.70 13.97   13.97
7  2008-01-16  13.80  13.85 13.11 13.32   13.32
8  2008-01-18  13.27  13.73 12.20 12.80   12.80
9  2008-01-21  12.75  13.34 12.35 13.22   13.22
10 2008-01-22  13.08  13.20 11.90 11.90   11.90
11 2008-01-23  11.00  11.40 10.71 10.71   10.71
12 2008-01-24  11.30  11.47 11.00 11.17   11.17
13 2008-01-07  11.97  12.14 11.70 11.90   11.90
14 2008-01-08  11.90  12.75 11.80 12.21   12.21
15 2008-01-09  12.10  13.03 12.05 12.94   12.94
16 2008-01-10  13.04  13.32 12.71 13.10   13.10
17 2008-01-11  13.15  14.15 13.15 13.93   13.93
18 2008-01-14  13.96  14.45 13.60 14.03   14.03
19 2008-01-15  14.00  14.18 13.70 13.97   13.97
20 2008-01-16  13.80  13.85 13.11 13.32   13.32
21 2008-01-18  13.27  13.73 12.20 12.80   12.80
22 2008-01-21  12.75  13.34 12.35 13.22   13.22
23 2008-01-22  13.08  13.20 11.90 11.90   11.90
24 2008-01-23  11.00  11.40 10.71 10.71   10.71
25 2008-01-24  11.30  11.47 11.00 11.17   11.17
26 2008-01-07  11.97  12.14 11.70 11.90   11.90
27 2008-01-08  11.90  12.75 11.80 12.21   12.21
28 2008-01-09  12.10  13.03 12.05 12.94   12.94
29 2008-01-10  13.04  13.32 12.71 13.10   13.10
30 2008-01-11  13.15  14.15 13.15 13.93   13.93
31 2008-01-14  13.96  14.45 13.60 14.03   14.03
32 2008-01-15  14.00  14.18 13.70 13.97   13.97
33 2008-01-16  13.80  13.85 13.11 13.32   13.32
34 2008-01-18  13.27  13.73 12.20 12.80   12.80
35 2008-01-21  12.75  13.34 12.35 13.22   13.22
36 2008-01-22  13.08  13.20 11.90 11.90   11.90
37 2008-01-23  11.00  11.40 10.71 10.71   10.71
38 2008-01-24  11.30  11.47 11.00 11.17   11.17
39 2008-01-07  11.97  12.14 11.70 11.90   11.90
40 2008-01-08  11.90  12.75 11.80 12.21   12.21
41 2008-01-09  12.10  13.03 12.05 12.94   12.94
42 2008-01-10  13.04  13.32 12.71 13.10   13.10
43 2008-01-11  13.15  14.15 13.15 13.93   13.93
44 2008-01-14  13.96  14.45 13.60 14.03   14.03
45 2008-01-15  14.00  14.18 13.70 13.97   13.97
46 2008-01-16  13.80  13.85 13.11 13.32   13.32
47 2008-01-18  13.27  13.73 12.20 12.80   12.80
48 2008-01-21  12.75  13.34 12.35 13.22   13.22
49 2008-01-22  13.08  13.20 11.90 11.90   11.90
50 2008-01-23  11.00  11.40 10.71 10.71   10.71
51 2008-01-24  11.30  11.47 11.00 11.17   11.17
52 2008-01-07  11.97  12.14 11.70 11.90   11.90
53 2008-01-08  11.90  12.75 11.80 12.21   12.21
54 2008-01-09  12.10  13.03 12.05 12.94   12.94
55 2008-01-10  13.04  13.32 12.71 13.10   13.10
56 2008-01-11  13.15  14.15 13.15 13.93   13.93
57 2008-01-14  13.96  14.45 13.60 14.03   14.03
58 2008-01-15  14.00  14.18 13.70 13.97   13.97
59 2008-01-16  13.80  13.85 13.11 13.32   13.32
60 2008-01-18  13.27  13.73 12.20 12.80   12.80
61 2008-01-21  12.75  13.34 12.35 13.22   13.22
62 2008-01-22  13.08  13.20 11.90 11.90   11.90
63 2008-01-23  11.00  11.40 10.71 10.71   10.71
64 2008-01-24  11.30  11.47 11.00 11.17   11.17
65 2008-01-07  11.97  12.14 11.70 11.90   11.90
66 2008-01-08  11.90  12.75 11.80 12.21   12.21
67 2008-01-09  12.10  13.03 12.05 12.94   12.94
68 2008-01-10  13.04  13.32 12.71 13.10   13.10
69 2008-01-11  13.15  14.15 13.15 13.93   13.93
70 2008-01-14  13.96  14.45 13.60 14.03   14.03
71 2008-01-15  14.00  14.18 13.70 13.97   13.97
72 2008-01-16  13.80  13.85 13.11 13.32   13.32
73 2008-01-18  13.27  13.73 12.20 12.80   12.80
74 2008-01-21  12.75  13.34 12.35 13.22   13.22
75 2008-01-22  13.08  13.20 11.90 11.90   11.90
76 2008-01-23  11.00  11.40 10.71 10.71   10.71
77 2008-01-24  11.30  11.47 11.00 11.17   11.17


使用openxlsx包

data4=read.xlsx("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xlsx",1)
data4
39454 11.97 12.14  11.7  11.9  11.9
1  39455 11.90 12.75 11.80 12.21 12.21
2  39456 12.10 13.03 12.05 12.94 12.94
3  39457 13.04 13.32 12.71 13.10 13.10
4  39458 13.15 14.15 13.15 13.93 13.93
5  39461 13.96 14.45 13.60 14.03 14.03
6  39462 14.00 14.18 13.70 13.97 13.97
7  39463 13.80 13.85 13.11 13.32 13.32
8  39465 13.27 13.73 12.20 12.80 12.80
9  39468 12.75 13.34 12.35 13.22 13.22
10 39469 13.08 13.20 11.90 11.90 11.90
11 39470 11.00 11.40 10.71 10.71 10.71
12 39471 11.30 11.47 11.00 11.17 11.17
13 39454 11.97 12.14 11.70 11.90 11.90
14 39455 11.90 12.75 11.80 12.21 12.21
15 39456 12.10 13.03 12.05 12.94 12.94
16 39457 13.04 13.32 12.71 13.10 13.10
17 39458 13.15 14.15 13.15 13.93 13.93
18 39461 13.96 14.45 13.60 14.03 14.03
19 39462 14.00 14.18 13.70 13.97 13.97
20 39463 13.80 13.85 13.11 13.32 13.32
21 39465 13.27 13.73 12.20 12.80 12.80
22 39468 12.75 13.34 12.35 13.22 13.22
23 39469 13.08 13.20 11.90 11.90 11.90
24 39470 11.00 11.40 10.71 10.71 10.71
25 39471 11.30 11.47 11.00 11.17 11.17
26 39454 11.97 12.14 11.70 11.90 11.90
27 39455 11.90 12.75 11.80 12.21 12.21
28 39456 12.10 13.03 12.05 12.94 12.94
29 39457 13.04 13.32 12.71 13.10 13.10
30 39458 13.15 14.15 13.15 13.93 13.93
31 39461 13.96 14.45 13.60 14.03 14.03
32 39462 14.00 14.18 13.70 13.97 13.97
33 39463 13.80 13.85 13.11 13.32 13.32
34 39465 13.27 13.73 12.20 12.80 12.80
35 39468 12.75 13.34 12.35 13.22 13.22
36 39469 13.08 13.20 11.90 11.90 11.90
37 39470 11.00 11.40 10.71 10.71 10.71
38 39471 11.30 11.47 11.00 11.17 11.17
39 39454 11.97 12.14 11.70 11.90 11.90
40 39455 11.90 12.75 11.80 12.21 12.21
41 39456 12.10 13.03 12.05 12.94 12.94
42 39457 13.04 13.32 12.71 13.10 13.10
43 39458 13.15 14.15 13.15 13.93 13.93
44 39461 13.96 14.45 13.60 14.03 14.03
45 39462 14.00 14.18 13.70 13.97 13.97
46 39463 13.80 13.85 13.11 13.32 13.32
47 39465 13.27 13.73 12.20 12.80 12.80
48 39468 12.75 13.34 12.35 13.22 13.22
49 39469 13.08 13.20 11.90 11.90 11.90
50 39470 11.00 11.40 10.71 10.71 10.71
51 39471 11.30 11.47 11.00 11.17 11.17
52 39454 11.97 12.14 11.70 11.90 11.90
53 39455 11.90 12.75 11.80 12.21 12.21
54 39456 12.10 13.03 12.05 12.94 12.94
55 39457 13.04 13.32 12.71 13.10 13.10
56 39458 13.15 14.15 13.15 13.93 13.93
57 39461 13.96 14.45 13.60 14.03 14.03
58 39462 14.00 14.18 13.70 13.97 13.97
59 39463 13.80 13.85 13.11 13.32 13.32
60 39465 13.27 13.73 12.20 12.80 12.80
61 39468 12.75 13.34 12.35 13.22 13.22
62 39469 13.08 13.20 11.90 11.90 11.90
63 39470 11.00 11.40 10.71 10.71 10.71
64 39471 11.30 11.47 11.00 11.17 11.17
65 39454 11.97 12.14 11.70 11.90 11.90
66 39455 11.90 12.75 11.80 12.21 12.21
67 39456 12.10 13.03 12.05 12.94 12.94
68 39457 13.04 13.32 12.71 13.10 13.10
69 39458 13.15 14.15 13.15 13.93 13.93
70 39461 13.96 14.45 13.60 14.03 14.03
71 39462 14.00 14.18 13.70 13.97 13.97
72 39463 13.80 13.85 13.11 13.32 13.32
73 39465 13.27 13.73 12.20 12.80 12.80
74 39468 12.75 13.34 12.35 13.22 13.22
75 39469 13.08 13.20 11.90 11.90 11.90
76 39470 11.00 11.40 10.71 10.71 10.71
77 39471 11.30 11.47 11.00 11.17 11.17


5、读取spss数据

library(foreign)  
data5=read.spss("C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-01.sav")
data5


注:还有很多,没有一一列举。掌握住几个方法就可以了。

目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
137 71
|
29天前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
217 92
|
2天前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
41 20
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
154 73
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
81 22
|
2月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
93 5
|
2月前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
6月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
110 2
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
306 4
|
6月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
122 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析

推荐镜像

更多