基于遗传优化算法的小车障碍物避障路线规划matlab仿真

简介: 基于遗传优化算法的小车障碍物避障路线规划matlab仿真

1.算法描述

   一种通过模拟自然进化过程搜索最优解的方法,对于一个最优化问题,该算法通过一定数量的候选解种群迭代地执行选择、交叉、变异、评价等操作使得种群向更好的解进化。

     遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。遗传算法的实现过程实际上就像自然界的进化过程那样。

遗传算法的一般步骤:

1.随机产生种群

2.根据策略判断个体的适应度,是否符合优化准则,若符合,输出最佳个体及其最优解,结束。否则,进行下一步

3.依据适应度选择父母,适应度高的个体被选中的概率高,适应度低的个体被淘汰

4.用父母的染色体按照一定的方法进行交叉,生成子代

5.对子代染色体进行变异

由交叉和变异产生新一代种群,返回步骤2,直到最优解产生

基本遗传算法的具体过程如下:
1.png

2.仿真效果预览
matlab2022a仿真如下:

优化初始阶段,路径。

2.png

优化中期阶段,路径。

3.png

优化结束,路径。
4.png

3.MATLAB核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
 
%设定数据
Data=[];
Data.B=[20 18];           %X轴Y轴边界
Data.S_E=[0,0;20,20];     %起点,终点
Data.size=100;             %种群大小
Data.length=30;           %染色体长度
M=round(Data.size/2);     %外部存档集规模
MaxIte=20;                %最大迭代次数
 
pm=0.3;%变异概率
pc=0.6;%交叉概率
% Obs.S=[];%障碍物各个顶点
Data.Obs(1).S=[1,4;2,4;2,1;1,1];%每个顶点存储按照顺时针顺序排列
Data.Obs(2).S=[3,6;4,6;4,3;3,3];
Data.Obs(3).S=[6,4;7,4;7,1;6,1];
Data.Obs(4).S=[8,10;9,10;9,5;8,5];
Data.Obs(5).S=[10,14;14,14;14,12;10,12];
Data.Obs(6).S=[14,8;18,8;18,6;14,6];
[Pop R k]=intpop(Data,Data.size,Data.length); %生成初始种群
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
chromlength=Data.length;%染色体长度
Obs=Data.Obs;           %障碍物坐标  与 Data.Obs相同
S_E=Data.S_E;           %起点,终点  与Data.S_E 相同
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
Lindex=[];   %每个种群中每个线段的直线参数a b c   ax+by+c=0
Lindex.abc=[];
 
for i=1:Data.size
    [Cindex P_Lindex]=check_crossing(Pop.ch(i).x(:,1),Pop.ch(i).x(:,2),chromlength,Obs,S_E); %检查是否路径段是否与障碍物相交
    %Cindex表示出现交叉点的点位置下标
    while 1-isempty(Cindex)
           [Pop.ch(i).x]=newpop(Pop.ch(i).x,Data,R,chromlength,k,Cindex);   %生成新种群   %保证点不在障碍物内   
           [Cindex P_Lindex]=check_crossing(Pop.ch(i).x(:,1),Pop.ch(i).x(:,2),chromlength,Obs,S_E);%对新种群检查是否相交
%             Cindex
            if 1-isempty(Cindex)          
                [Pop.ch(i).x]=newpop(Pop.ch(i).x,Data,R,chromlength,k,Cindex);    
                [Cindex P_Lindex]=check_crossing(Pop.ch(i).x(:,1),Pop.ch(i).x(:,2),chromlength,Obs,S_E);
            end
 
    end
     Lindex(i).abc=P_Lindex;
end
 
 
[F]=Goals(Pop,S_E,Data.size,chromlength,Obs,Lindex); %计算目标函数值
Pop.f=F;
 
Qop.ch=[];%外部存档集
Qop.f=[];
Qop.fitness=[];
 
 
%开始循环
for t=1:MaxIte
     t
     [Pop Qop Pop_Qop]=cal_Fitness(Pop,Qop);%计算适应度   
     [Qop]=environmental_sele(Pop,Qop,Pop_Qop,M); %环境选择
 
     if t==MaxIte       
        [NDSet]=sel_NDSet(Qop);  %选择非支配个体  
         break;
     else
         [NewQ_ch]=binary_tournament_selection(Qop);  % 锦标赛选择 
         [NewQ_ch]=cross_mutation(NewQ_ch,Data,Obs,S_E,pc,pm,chromlength,k,R);% 染色体交叉 突变
         [NewQ_ch]=delete_point(NewQ_ch,Data,chromlength,Obs,S_E,k,R);  %平滑算子(有待改进)
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%重新赋值
         Q_size=length(NewQ_ch);
         Qop.ch=[];
         
         for q=1:Q_size
              Qop.ch(q).x=NewQ_ch(q).ch;                    %重新赋值染色体
         end
         
         Qop.f=Goals(Qop,S_E,Q_size,chromlength,Obs,Lindex); %重新计算目标函数值
         Qop.fitness=[];
     end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为画图程序
S_size=6; %总共多少个点
S(1).xy=[1,4;2,4;2,1;1,1;1,4];
S(2).xy=[3,6;4,6;4,3;3,3;3,6];
S(3).xy=[6,4;7,4;7,1;6,1;6,4];
S(4).xy=[8,10;9,10;9,5;8,5;8,10];
S(5).xy=[10,14;14,14;14,12;10,12;10,14];
S(6).xy=[14,8;18,8;18,6;14,6;14,8];
 
ND_size=length(NDSet.ch);
% ND_size=Data.size;
for example=1:ND_size;   %第几个种群
    if mod(example,4)==1
    P=[Data.S_E(1,:);NDSet.ch(example).x];
    P=[P;Data.S_E(2,:)];
    figure(example);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
    for i=1:S_size
        for j=1:4
            plot([S(i).xy(j,1) S(i).xy(j+1,1)],[S(i).xy(j,2) S(i).xy(j+1,2)],'-r');
         hold on; 
        end  
    end
    grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    plot(P(:,1),P(:,2),'.b');
    hold on
    plot(P(:,1),P(:,2),'-b');
    hold on
    end
end
A89
相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
14小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
6天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。